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A) Introduction 

Note: Commands you need to execute in R are in bold type, with an arrow 
prefixed 

R is an open source statistical software package for use on Linux, Mac and 
Windows machines. Precompiled binary distributions are available for download at 
http://cran.r-project.org. For Windows, use: base distribution, R version 2.11.1. 

Manuals. Several manuals are provided with the software. Useful manuals can be 
accessed online: http://cran.r-project.org/manuals.html 

The help command (to be explored today) should be your first port of call. 
http://search.r-project.org provides a powerful search for R functions and mailing-
list archives on the web. 

This session introduces the R interface (see part B);  
the menu bar (see part C);  
the tool bar (see part D);  
and script files, which allow you to define a sequence of instructions and execute them 
sequentially. 
 
 
Exercise I-1. Find help; R commander; install/load packages 
There should be an R icon at the bottom of the Quicklaunch section of the desktop sidebar 
(blue letter “R”). Click on it.  
 
 

B) The R interface 
In Linux, the R distribution comes with no pre-installed graphical user interface (GUI). After 
successful installation, you can run the program directly in the console by typing the upper 
case letter ‘R’. The Windows distribution comes with a Java GUI. R opens up with the 
console window. 

To begin with, it probably is convenient to install the ‘R Commander’ package from one of 
several R mirrors. Type the following command in the command line: 

� install.packages("Rcmdr") 

Choose a mirror (e.g. Bristol or London) and click the ‘OK’ button. After the package has 
been unpacked, you can load it in the active workspace by typing: 

� library(Rcmdr)  or require(Rcmdr) 

The R Commander has two windows. You can use the Script window to write commands and 
send them to the console by pressing the ‘Submit’ button or the hot key ‘Ctrl+R’. The Output 
window reproduces the command and gives the corresponding output. Try: 

� 1+1 

Also, notice the menu-bar at the top, starting with File, Edit, … Help.  

Type in at the script window:  

� memory.size(2000) 
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This is the memory that will now be available for you to work in R (the maximum memory 
that your datasets may take up). 

Case-sensitive. Commands in R are always given in lowercase letters. R is case 
sensitive, so variable names should be typed exactly the way they were created. Each 
command has, associated with it, a help file, which can be consulted using the help 
command. For example:  

� ?memory.size 
� help.search("memory size") 

 
 
C) The menu-bar 

There are several ways to give commands to R.  

1) Via the menu bar at the top of the screen.  
2) You can specify commands in the command line.  
3) You may create a text document (a script) with a series of commands and get them 
to be executed sequentially as a program.  

We will learn all the above. The last one is used most common because it is the most 
flexible. To start we use the menu bar. 

 
 
Exercise I-2. Load a dataset and save it with a different name 
Data is best read into R using the ‘Comma Separated Value’ format (file extension .csv). To 
convert an Excel (.xls) file to .csv, simply save the dataset as .csv in the spreadsheet editor of 
your choice. To load a dataset in R from the menu bar: 

� Data/Import data/from text file…/   

Enter ‘eaef2’ as the name of the dataset, select ‘Commas’ as the field separator, click ‘OK’ 
and then select the dataset. 

The drive which contains the data is JBSroot on ‘PROTON (ntdomain)’ which has the alias 
V. If you explore that drive, you will be able to find the folder: V:\Public\MP01\data 

Open the CSV dataset: eaef.csv 

Convince yourself that the data was successfully imported: 

� ls() 

Save the dataset in your own file space, from the menu bar:  

� Data/Active data set/Save active data set… [ your network directory for this 
module’s lab sessions] \eaef2.RData  

If you do not have an account in the JBS network, you may use a temporary folder that you 
create in C:\. Copy the files you create in this folder into your own USB by the end of the 
session. 

If you are not a student from the Judge, provide me with your name and crsid for the use of 
the JBS IT Services, who will create an account for you. 
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You can load multiple datasets into R. A dataset is in the form of a matrix with 
variables arranged in columns and a different observation in each row. To refer to a 
variable in R you must indicate which dataset it belongs to by typing dataset$variable. 
Using the attach(dataset) and detach(dataset) options, you can simply refer to a 
variable in the attached dataset by typing its name.  

Clear the R workspace: 

� rm(list=ls()) 

and open your newly saved file. 

� Data/Load data set/eaef2.RData 

Variables in dataset eaef.csv 

Personal variables 

 AGE C age in 1994 
 S C years of schooling (highest grade completed as of 1994) 
 MALE D sex of respondent (1 if male, 0 if female) 
 ETHBLACK D ethnicity: black 
 ETHHISP D  hispanic 

score on a component of the ASVAB battery (scaled with 
mean 50, standard deviation 10) 

 ASVAB2 C  arithmetic reasoning 
 ASVAB3 C  word knowledge 
 ASVAB4 C  paragraph comprehension 

 ASVABC C composite of ASVAB2 (with double weight), ASVAB3 
and ASVAB4 

 CHILDREN C number of children in the household 
 YOUNGEST C age of youngest child 
 CHILDL06 C presence of a child age < 6 in the household 

 CHILDL16 C presence of a child age < 16, but no child age < 6, in the 
household 

 MARISTAT T marital status, coded as: 1 never married; 2 married, 
spouse present; 3 other 

 MARRIED D married (MARISTAT=2) 
 
Work-related variables 

 EARNINGS C current hourly earnings in $ reported at 1994 interview 
 WORKING D working (has recorded earnings) 

 EMPSTAT T employment status, coded as: 1 employed; 2 
unemployed; 3 out of the labor force 

For more comments regarding loading data see Appendix 1. 
 
 
Exercise I-3. Observe the displays in different windows and create a script file 
Observe the main transformations that occurred in the different windows. 

In the ‘Script window’ , all the commands that we executed are stored in sequence. 

In the ‘Output window’  we observe commands AND results written in different 
colours. In particular, note that the commands that have been executed are presented in 
red, prefixed with a ‘>’. 
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Note the structure of the commands given: 

eaef2 <- read.table("C:/…/eaef.csv", header=TRUE, sep=",", 
na.strings="NA", dec=".", strip.white=TRUE) 

Each dataset loaded must be given a name (here for example: ‘eaef2’) as in R there 
can be multiple dataset in use at a time. The above command reads the table stored 
in the file C:/…/eaef.csv into the current workspace. The options specified tell R 
that (1) the first line of the file contains names of the variables,  (2) commas are 
field separator characters, (3) “NA” is the string that is to be interpreted as Not 
Applicable (NA) value, (4) “.” is the character used in the file for decimal points, 
and (5) leading and trailing white space should be stripped from character fields. 

Note that when the last item in the output window is a red ‘>’ all by itself, the program is 
ready to receive a fresh command. 

As a program, R functions by manipulating variables. The notion of a variable in R 
corresponds directly to the notion of a variable in statistics. Thus each variable has a 
certain number of observations associated with it (frequently all variables will have 
the same number of observations). Each observation corresponds to what we think 
of as a data point.  

Now create a Script-file : 

� File\ New Script or: press Ctrl+O 

Save the new script in your own file space to document this session: 

� File\ Save as… or: press Ctrl+S 

Copy all commands used so far in the R Commander into the script file.  

Note the advantage of using script compared to mouse and menu: it allows you to document 
your results and helps others to replicate them. Your script could look like this example: 
 

# ------------------------------------------------------------------------------------- 
# Econometrics Module 
# Lab Session 1 
# ------------------------------------------------------------------------------------- 
 
# --- Ex 1: find help, R Commander, install/load packages ----------------- 

?memory.size                              # help if command is known 
help.search("memory size")       # help if command is not known 

install.packages("Rcmdr")     # install package Rcmdr 
library(Rcmdr)      # load package 
 
# --- Ex 2: Load a dataset and save it with a different name ---------------- 

eaef2 <- read.table("C:/…/eaef.csv", header=TRUE, sep=",", na.strings="NA", 
dec=".", strip.white=TRUE)       # read dataset from .csv file 

ls()                                               # display active objects in workspace 

save("eaef2", file="C:/…/eaef2.RData")   # save active object eaef2 

rm(eaef2)                              # clear object eaef2 from workspace 
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rm(list=ls())                             # clear workspace 

load("C:/…/eaef2.RData")         # load object eaef2 

The new Script-file is used in the same way as the ‘Script window’ in the R Commander. 
Commands are sent to the console (equivalent to the Rcmdr’s ‘Output window’) using: 

� Ctrl+R 

You can switch between console and script using  

� Ctrl+Tab 
 
 
Exercise 1: Summary statistics 
Create useful summary statistics for the variables in the dataset eaef2. To facilitate this task, 
use the attach command. The command below looks at the dataset eaef2 and reads the names 
of the variables. It then sets each one as a variable in its own right. 

� attach(eaef2) 

� hist(weight) 

 

summary(weight) 
mean(weight) 
median(weight) 
quantile(weight) 

sd(weight) 

max(weight) 
min(weight) 
range(weight) 
sum(weight) 
length(weight) 

� library(timeDate) 
skewness(weight, method="moment") 
kurtosis(weight, method="moment") 

boxplot(weight) 

 
 
Exercise 2: Calculate proportions of observations presenting a certain 
characteristic 

a) What is the proportion of observations with 3 siblings?  

Use length(), the condition operator [ ] and the logical assertion == to look-up the size of this 
subsample: 

� length(siblings[siblings==3]) 

Look-up the size of the total sample:  

� length(siblings) 

We have 118 observations with 3 siblings and 540 observations in total. So the proportion of 
observations is 118/540. 
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b) What is the proportion of observations with weight less than 120? 

� length(weight[weight<120])  # and so on… 
 
 
Exercise 3. Analysis of the frequency of discrete variables 

a) Tabulate the count, percentage, cumulative count and cumulative percentage for every 
given number of siblings (from 0 to 13). 

� table(siblings)   # count 
� t <- table(siblings)   # percentage 
� round( t/sum(t), 4 )*100 
� cumsum(t)    # cumulative count 
� round( cumsum(t/sum(t)), 4)*100 # cumulative percentage 

     
        Cumulative Cumulative 

Value Count Percent Count Percent 
0 24 4.44 24 4.44 
1 95 17.59 119 22.04 
2 140 25.93 259 47.96 
3 118 21.85 377 69.81 
4 68 12.59 445 82.41 
5 41 7.59 486 90.00 
6 19 3.52 505 93.52 
7 14 2.59 519 96.11 
8 10 1.85 529 97.96 
9 3 0.56 532 98.52 
10 4 0.74 536 99.26 
11 2 0.37 538 99.63 
12 1 0.19 539 99.81 
13 1 0.19 540 100.00 

Total 540 100.00 540 100.00 
     
     

b) What is the proportion of observations with 3 siblings? 
 
Look-up 4th row, 2nd column in the matrix above (21.85%). 
   
 
Exercise 4. Frequency of a combination of discrete variables (two-way tables) 
The command cut() allows you to categorise a continuous variable into several levels. 
Produce a variable agecut with four levels based on the quartiles of age. 

� eaef2$agecut <- cut(age, breaks=quantile(age)) 

Cross-tabulate the new variable agecut and siblings. 

� attach(eaef2) 
� table(agecut, siblings) 
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Exercise 5. Analysis of a variable conditioned on a discrete variable  
a) Evaluate the mean earnings conditioned on the four age-groups defined above. 

� by(data=earnings, INDICES=agecut, FUN=mean) 

b) Plot histograms for earnings conditioned on the four age-groups. 

� par(mfrow=c(2,2)) 
� by(data = earnings, INDICES = agecut, FUN = hist) 

 
 
Exercise 6. Graphs 

a) Produce a scatter plot of height against weight. 

b) Produce a histogram of earnings. 

� plot(height ~ weight) 

 

� hist(earnings) 

 
 
 
Exercise 7. Generate linear transformation 

a) Generate a linear transformation to obtain post tax-benefit earnings 

� eaef2$ptearnings <- 2 + (earnings-2)*0.8 

b) Generate a log-transformation of earnings. 

� eaef2$earnings <- log(earnings) 

 
 
Exercise 8. T-tests 
We use the normal distribution when: i) the population is known to follow a normal 
distribution with known population variance; or ii) when the shape of the population 
distribution is not known but the size of the sample is bigger than 30. A company wants to 
assess their new measures to control claim costs.  
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Costs used to be 60 pounds.  They wish to test if they have been reduced. They are willing to 
work with a 5% level of significance. They extract a sample of 26 observations: 

45 49 62 40 43 61 48 53 67 63 

78 64 48 54 51 56 63 69 58 51 

58 59 56 57 38 76 

    
a) Test the hypothesis that they benefited from the new procedures.  

b) Perform this test and calculate the confidence interval at 99% significance level. (This 
part, to be done in Lab-Session 1). 

Answer: 

a) First, just put the data in vertical form with Excel: 

Ho: µ=60;   Ha: µ<60 

The test is one-tailed one so. We decide the significance level at 5%. The test statistic is the t-
student, because the sample is small and we don’t know about the variance of the population.  

The computed value for t is t�� � ���µ� √
� � ��.�������.�� √��� � �1.818
 

. The critical value is -1.708, 

 so we reject the null. Note that if we had decided to test it at 1% significance level, the result 
would have been the converse! 

b) For this part, first highlight the data and copy them into your clipboard (Ctrl+C). Then read 
the data from the clipboard into R: 

� data <- scan("clipboard") 

Second, the confidence interval at 99% level: 

� mean(data) + c(-1,1)*sd(data)*qnorm(0.99) 

The test of hypothesis is performed using: 

� t.test(data, mu=60, alternative="less", conf.level=0.99) 

Observe the outcome: note that different results arise according to the type of test suggested 
(one-tail on the left, one-tail on the right, two-tail). Note that the confidence interval is built 
for a two-tail test. 
 
 
Exercise 9. The linear model 
Load the dataset growth.csv.  

This dataset shows the average rates of growth of GDP and employment for 25 OECD 
countries for the period 1988-1997. It was taken from Dougherty's book. Mexico is not 
included because it is an outlier, as employment increases dramatically after the 
implementation of NAFTA. The reason is that individuals who worked in the informal 
sector (and therefore were not included in the series) moved into the formal sector with 
the arrival of US manufacturing companies. 

 
a) Check the content and regress employment growth on GDP growth. Provide and 

interpretation of the results. 
b) Visually inspect data and regression line.   
c) Are the coefficients significant? 
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d) Is it there any other interesting test to run? 
e) Is it a good fit?  
f) Build the interval of confidence for the slope yourself.  
g) How would you interpret the column after the t?  

Answers: 

a)  
� str(growth)  
� lm9 <- lm(empgrow ~ GDPgrow, data=growth); summary(lm9) 

What is the regression line saying? In the first column the table gives the name of the 
regressor, in the second it gives its estimate. The regression implies that a 1 percent 
increase in the growth of GDP generates a 0.48 percent increase in the rate of growth 
of employment. Should the investigator expect increments of the same magnitude in 
growth rate of employment and that of GDP? According to these results she shouldn’t, 
technical progress is clearly making GDP grow more than employment. 

The intercept suggests that, if GDP is static (growth = 0), employment will have a 
negative growth rate of 0.55 percent per year (maybe technical change saves labour). 
In some slow-growing countries employment growth has actually been negative, and 
this could be the reason for this result on the intercept. 

b)  
� plot(empgrow ~ GDPgrow, data=growth) 
� abline(lm, col="red") 

It is evident that the true relationship is in fact nonlinear. Probably a function of a 
different form for the explanatory variable would be more suitable. We will study this 
issue in the next session. 

As modelers, we are interested in testing whether GDP growth has or hasn’t had an 
impact on employment (and therefore shouldn’t be included in the model). For this 
purpose, we define H0: β2 = 0 (so it has no influence). Then we fix the maximum 
probability we allow for the error of type I1 (the level of significance) and the critical 
region is defined so that the error of type 2 is minimized. For this purpose we need the 
tables. 

c) Let’s start with the slope. We may perform two types of tests:  

      i)  We may think that it is meant to be positive, as in the long run both variables 
should be positively correlated. The test would be: 

H0: β2 = 0; Ha: β2 >  0 

This is a one tailed test. We have to define the level of significance (α, let’s say we fix 

it at 5%) and then look for the t-value from the tables at the point up to where the t-
Student cumulates 0.95 of probability. In our case the value we look for is 1.714, as 
we have 23 degrees of freedom. The t-statistic is given in the fourth column. In this 
case the t-statistic is 5.75 (as such, higher than the t from the tables) and, therefore, we 

                                                 
1 The probability of rejecting H0 when it is true. 
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reject the null. Why’s that? Remember: �� � � � � ������ . Commonly, in our 

examples of test of hypothesis we’re thinking that if β = 0; then, the distribution of � ������  is a t-student with n-K degrees of freedom. Now if �� does not fall within the 

bigger zone in Figure 1, then we decide that the null hypothesis was a wrong one, and 
we reject it. 

Figure 1. One tailed test 

 

ii)  Instead we may have no idea of which the sign of the slope may be. The test would 
be, in that case, a two-tail one: 

H0: β2 = 0; Ha: β2 ≠  0 

This is a two-tailed test (we don’t say that the statistic has to be much larger than the 
null to reject, but just that it has to be far from it: much larger or much smaller). 

Again, we have to define the level of significance (α) and then look for the t-value 
from the tables. Now we want 5% aggregated in both tails, so we need to look for 
tα/2 = t0.25  or the value up to which the t-Student cumulates 0.975 of probability. In our 
case, this is 2.069, as we have 23 degrees of freedom. In this case the t-statistic is 5.75 
(as such, higher than the t from the tables) and, therefore, we reject the null.     

Figure 2. Two tailed test 

t̂  

d) In fact it would’ve been interesting to test H0: β2 = 1; Ha: β2 ≠  1, that is, if 
employment grows as fast as GDP or if labour-saving technical progress makes that it 

is less than 1. t-statistic would be then (1- 0.4897)/0.08511= 6.13, which is higher than 
2.069, and so we reject the null. 

e) With an R2 of 0.59 it seems quite a good fit, especially considering that there’s only 
one regressor. 

tα/2          

α/2 
(1 − α) α/2 

reject 

fail to reject 

tα 

α (1 − α) 

fail to reject 
reject 

- tα/2 

 

0 

reject 



Lab Session 1: Descriptive Statistics and Linear Regression in R Econometrics I, Michaelmas 2010 
 

 12

©
 P

a
ul

 K
at

tu
m

an
 &

 T
hi

lo
 K

le
in

 

f) We will build the interval of confidence only for the two-tailed test at a 5% level of 
significance. The question in Figure 2 is what is the interval such that β2 falls in it with 
a 95% of confidence? We don’t have a table of β2’s distribution, but remember that: 

��� � �� � �� ������� , and this distribution is described in tables. We can use, 

therefore, this in order to build the interval of confidence. In fact we want to compute 

the interval in which P(|t 
b2
 | � 0.975 t-quantile) = 0.95. Basically, we’re saying that the 

probability that our estimator b2 differs from the parameter β2 by a small number, 0.975 
t-quantile (= t0.975), is very big, 0.95. It only remains to operate: 

                �� ��� � ��.!"�# � 0.95 

      � '(�� � �� ������� ( � ��.!"�) � 0.95 

             � '���.!"� � �� � �� ������� � ��.!"�) � 0.95 

     ����� * ������ + ��.!"� � �� � ��� * ������ + ��.!"�� � 0.95 

           ���� � ������ + ��.!"� � �� � �� * ������ + ��.!"�� � 0.95
 

In our case this is:  

0.489737 – 0.0851184 · 2.069 < β < 0.489737 + 0.0851184 · 2.069 

And this is what we have in the last two columns. 

DIY with the intercept. Note that the null is not rejected at 5% significance level when 
we consider two-tailed tests (critical value being 2.07, do: qt(p=1-0.025, df=23) or: 
qt(p=0.025, df=23, lower.tail=F) ); but it is rejected for one-tailed tests (critical value 
being 1.71, do: qt(p=1-0.05, df=23) ).  

g) In the fifth column the p-value is reported. This informs us about how much  
probability is cumulated in both tails. That is the probability of having obtained the t-
statistic that we did obtain, or others higher if the null hypothesis is true. If the p-value 

is less than 0.05 then �̂ has fallen in the darker probability zone (the critical region), 
and we reject the null hypothesis at a 5% level of significance. In this case this is what 
happens with the intercept.2 Note that p-values and confidence intervals are 
computed for a two-tailed test! 

 
 

Exercise 10. The linear model with quadratic terms 
Use housing.csv. For many years it has been conjectured that households spent a constant 
share of their incomes in housing. 

a) Estimate a model to test this, using total expenditure as a proxy for total income. 
                                                 

2 This is what we want, to reject the null. Otherwise, in principle, our model would not be explaining the 
dependent variable. The rule of thumb is: a low value for the p-value indicates that our model is in good health. 
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b) Is a quadratic form more appropriate? 
 

a) We have data of expenditures on housing and incomes. We want to test whether 
housing/income is constant. So we may want to estimate 

      housingi = β1 + β2 
.
 incomei + ui 

� lm10a <- lm(housing ~ total, data=house) 

    If β1  = 0 then the share would have been constant. This hypothesis is rejected. 

b) We try now housingi = β1 + β2 
.
 incomei + β3 

.
 income2i + ui  

� house$totalsq <- house$total^2 
� lm10b <- lm(housing ~ total + totalsq, data=house) 

β3  is not significant. Since we don’t have a theoretical background which would 
define the polynomial form to apply, we drop the squared component: share is 
increasing with income. 

 

 
Exercise 11. Extrapolation and accuracy of least squares 
Load the eaef.csv dataset. Learn a bit about the dataset by using str(). Is it possible to explain 
the weight of the students measured in pounds (weight) with their height measured in inches 
(height)?  Provide an interpretation of the coefficients. 

Answer:   

The regression implies that, for every extra inch of height, an individual tends to weigh an 
extra 5.56 pounds.   

Note the negative value of the intercept. This would suggest that an individual with no height 
would weigh –221 lbs (pounds). Of course this has no meaning and raises an important issue: 
if you don’t have observations close at both sides of the ordinates (no X negative) or even no 
X close to 0, then you may find no reasonable intercepts. 

Accuracy of least squares: 

Remember in the simple linear regression model: -. � �� * �� + /. * 0. 
 �� � ∑�23�24�+�53�54�

67� , where �8� 9 ∑�:. � :;�� 

�� � <=>�/, -�@AB�/�  

@AB���� � CD�@AB�/� 
With the last formulae we may see how the precision of estimator for �E� (its variance) varies 
with the variances of the errors and of the Xs (called systematic variance in the figure below). 
In the Figure presented in next page there are four possible cases. Note that for a good fit not 
only a small variance of the errors is needed but also large variation in the regressors. It is 
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basically case 2 where the variance of the errors is low and the systematic variance is high. In 
the diagrams below, this corresponds to the lower left hand side figure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
The standard deviation of x in the right diagrams is 3 times as large as in the left ones, and the 
standard deviation of the error terms in the lower diagrams is 3 times as large as in the upper 
ones. 
 
 

Exercise 12. Estimates for changing units of measurement 
a) Consider what slope coefficient would have been in Exercise 4 if weight had been 

measured in grams. Consider what changes would have occurred to the original slope 
coefficient if height were measured in metric units, i.e. cm.   

b) Confirm these conclusions by creating the new variables in R and comparing the 
estimated parameters. What happens with the slope? (Note: one pound is 454 grams, 
and one inch is 2.54 cm.) 
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Answer: 

a) Let the weight and height be W and H in imperial units and WM and HM in metric units.  
Then WM = 454W and HM = 2.54H. 

�� � <=>�F, G�@AB�F�
 

Remember: 

If H�-� � I5 and J � K + - L H�J� � H�K + -� � K + I5 

<=>�/, -� � HM�/ � I2� + �- � I5�N  
L <=>�/, K + -� � HM�/ � I2��K- � KI5�N 
                           � K + HM�/ � I2��- � I5�N 
                           � K + <=>�/, -� 
We apply this property two lines below. The slope coefficient for the regression with weight 
measured in grams, ��O, is given by 

��O � <=>�F, GP�@AB�F� � <=>�F, 454 + G�@AB�F� � 454 + <=>�F, G�@AB�F� � 454 + �� 

The slope coefficient for the regression with height measured in centimeters, �E�RS, is given by 

��RS � <=>�FP, G�@AB�FP� � <=>�2.54 + F, G�@AB�2.54 + F� � 2.54 + <=>�F, G�2.54� + @AB�F� � 12.54 �� 

In other words, if we change scale in the Y, multiplying it by a factor κ, then the estimate for 
the slope will also be multiplied κ. On the other hand, if we change scale in the X, multiplying 
it by a factor γ, then the estimate for the slope will be divided by γ. 

b) 

eaef$weight_grams <- eaef$weight*454 
eaef$height_metric <- eaef$height * 2.54 

lm(weight_grams ~ height, data=eaef) 
5.562*454 # =2525.148 

lm(weight ~ height_metric, data=eaef) 
5.562496/2.54 # =2.189959 

 
 

Exercise 13. Multiple linear regression 
Use hprice1.csv and familiarize yourself with the dataset to estimate the model 

price = β0 + β1 
. sqrft +  β2 

. bdrms + u 

where price is the house price measured in thousands of dollars. 

a) Write out the results. What is the estimated increase in price for a house with one more 
bedroom, holding square footage constant? 
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b) What is the estimated increase in price for a house with an additional bedroom that is 
140 square feet in size?  

c) What percentage of the variation in price is explained by square footage and number 
of bedrooms? 

d) The first house in the sample has sqrft = 2,438 and bedrms = 4. Find the predicted 
selling price for this house from the OLS regression line. 

e) The actual selling price of the first house in the sample was $300.000 (price=300). 
Find the residual for this house. Does it suggest that the buyer underpaid or overpaid 
for the house? 

Answer: 

a) price = -19.32 + 0.128  
. sqrft + 15.20  

. bdrms + u 

The estimated increase in price, given square feet size is 0, β2= 15.20. Note that it is 
insignificant, so the increase in price due to an increase in 1 bedroom is not statistically 
different from zero.  

b) Now the increase in price is higher because the house is larger. 

 ∆VBW<� � 0.128 + �140� � 17.92. (or: $17.920) 

c) That’s equal to the R2, 63.2%.  

d) The predicted price is –19.32 + .128(2,438) + 0(4) = 292.74, or $292,740. 

e) If the actual selling price was $300,000, the buyer overpaid by some margin. But, of 
course, there are many other features of a house (unobserved by us) that affect price, and 
we have not controlled for these. 

 
 

Exercise 14. Reversal of regressor and regressand 
Load eaef.csv. The theory indicates that earnings are determined by schooling. Two 
individuals model this problem. The first individual does it correctly and obtains the 
following result: �ABYZY[�\ � �12.6 * 2.37 + �<_==`WY[ 

The second individual, instead, first regresses schooling on EARNINGS, obtaining the 
following result: 

�<_==`ZY[a � 12.24 * 0.073 + �ABYWY[� 

From this result the second individual derives 

�ABYWY[� � ��12.24 * �<_==`WY[�0.073  

and concludes: �ABYZY[�\ � �167.7 * 13.7 + �<_==`WY[ 

a) Explain why this equation is different from that fitted by the first individual. Is it only 
one of them correct. 

b) Under which circumstances would both individuals get the same results? 

Answer:   
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a) The slope coefficient for any estimation is equal to Cov(Y,X)/Var(X).  

The first individual calculated the slope coefficient as Cov(earnings, 
schooling)/Var(schooling).  This is what this exercise was asking.  

The slope in the second strategy corresponds to: Cov(earnings, schooling)/Var(earnings). The 
second applicant, then, revises the equation, and in an attempt to estimate the parameter in the 
model recommended by theory uses the inverse of this to estimate the parameter on schooling 
in the original model. Therefore, she is effectively using the expression 
Var(earnings)/Cov(earnings, schooling).  Obviously the two individuals are using different 
estimators and therefore in general will obtain different results. 

b) The estimates in fact turn out to be identical when  

bcd�efgh.hij,jbkccl.hi�
mfg�jbkccl.hi� � mfg�efgh.hij�

bcd�efgh.hij,jbkccl.hi� , 
which is  Mbcd�efgh.hij,jbkccl.hi�N�

mfg�jbkccl.hi�+mfg�efgh.hij� � 1 , 

In other words, both strategies produce the same results only when the correlation coefficient 
is equal to plus or minus one. 
 
 

Exercise 15. Regression against a constant (optional)  
What happens if we only include the constant as a regressor? a) Examine this by estimating a 
model for weight using eaef. b) Demonstrate algebraically. 

Answer: 

a)  
� lm(weight ~ 1, data=eaef) 
� summary(eaef$weight) 

b)  

The model that we’re estimating is: -. � �� * 0.  
We need to calculate the corresponding sum of square errors and then minimize them. First, 
then, we calculate the errors:  
Let the fitted model be: -n. � ��  
Then ei, the error in observation i, is given by 

�. � -. � -n. � -. � �� 

and the sum of square errors, or residual sum of squares (RSS), is given by 

opp � ∑ �.�h.q�   

  � ∑ �-. � ����h.q� � �-.� � 2��-. * ����  
  � ∑ -.�h.q� * ∑ ��2��-.�h.q� * Y��� � ∑ -.�h.q� � 2�� ∑ -.h.q� * Y���  

The first-order condition for a minimum is: 

rs66
r�t � �2 + ∑ -.h.q� * 2 + Y + �� � 0  
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Hence: �� � ∑ 53u3vth � -4  

The second derivative of RSS, 2n, is positive, confirming that we have found a minimum. 

In sum, if Y is a random variable with unknown population mean ��, we have shown that the 
sample mean of Y is equal the least squares estimator (and, therefore, the BLUE estimator) of 

b1 in the model -. � �� * 0.. 
 
 
Exercise 16. Confidence intervals for regression coefficients 
A researcher hypothesizes that years of schooling, schooling, may be related to the number of 
siblings (brothers and sisters), siblings, according to the relationship 

                                schooling = β1 + β2 ⋅ siblings + u 

She tests the null hypothesis H0: β 2 = 0 against the alternative hypothesis H1: β 2 ≠  0 at the 5 

percent and 1 percent levels.  Assume he has 60 individuals. What should she report? (Note: 

this exercise may be repeated at home with real data using eaef.dta). 

1. if b 2 = –0.20, s.e.(b 2) = 0.07? 

2. if b 2 = –0.12, s.e.(b 2) = 0.07? 

3. if b 2 = 0.06, s.e.(b 2) = 0.07? 

4. if b 2 = 0.20, s.e.(b 2) = 0.07? 

Answer:   

There are 58 degrees of freedom, and hence the critical values of t at the 5 percent and 1 
percent levels are 2.001 and 2.663 respectively. 

� qt(p=0.025, df=60-2, lower.tail=F) 
� qt(p=0.05, df=60-2, lower.tail=F) 

1. The t statistic is -2.86. Reject H0 at the 1 percent level. 
2. t = –1.71. Do not reject at the 5 percent level. 
3. t = 0.86. Do not reject at the 5 percent level. 
4. t = 2.86. Reject H0 at the 1 percent level. 
 


