Dates	Introduction	SND	Estimators	Sampling Distribution
00	000000000	00000000000	000000000000000000000000000000000000000	0000000000

MFin Econometrics I Session 1: Normal distribution, Estimators, Sampling distributions of estimators

Thilo Klein

University of Cambridge Judge Business School

Session 1: Normality, Estimators http://thiloklein.de

Dates	Introduction
0	000000000

Estimators

Sampling Distribution

Timetable

Timetable

- Lectures
 - 7, 14, 21, 28 Nov, 9-12.30pm @ LT2
- Lab Sessions EViews and RExcel software Despo Malikkidou
 11, 18, 23, 30 Nov, 2-4pm @ Computer Lab Jerry He
 11, 18, 23, 30 Nov, 2-4pm @ (W2.01, LT2, LT2, LT2)

Dates ○●	Introduction 000000000	SND 00000000000	$\begin{array}{c} \mathbf{Estimators} \\ \texttt{00000000000000000} \end{array}$	Sampling Distribution
Deadline	es			

Contest (Multiple Choice Exercises)

	Sheet 1	Sheet 2	Sheet 3	Sheet 4
Submit on	13 Nov	17 Nov	20 Nov	22 Nov
Weight	8 %	$10 \ \%$	$12 \ \%$	14 %
	Sheet 5	Sheet 6	Sheet 7	—
Submit on	27 Nov	29 Dec	6 Dec	_
Weight	$16 \ \%$	$18 \ \%$	22 %	—

Assessment (Workbooks)

	Book 1	Book 2
Handed out	30 Nov	30 Nov
Submit on	12 Dec	12 Dec
Weight	$50 \ \%$	$50 \ \%$

Session 1: Normality, Estimators

http://thiloklein.de

3/ 50

Dates 00 Introduction

Estimators

Sampling Distribution

Objectives

Objectives of the module

- "Introduction" to *applied* statistical methods
- Mathematical sophistication ~ simpler research journal papers in finance/strategy/marketing ...
- Learning by doing do many exercises
- Should enable you to estimate useful, insightful and *exciting* regression models and make careful inferences.

Dates 00	Introduction 000000000	SND 00000000000	Estimators	Sampling Distributio
Motivat	ion			

Patterns and relationships in Finance / Management / Economics with important strategic and policy implications:

- Do financial intermediaries reduce information asymmetries on online lending platforms?
- Does management advice improve productivity and performance of firms?
- Does microfinance reduce poverty?
- How much are people willing to pay for different hospital care packages?
- Does smoking lead to lung cancer?
- Do smaller class sizes lead to better test score performance?

Causal Effects

Using data to measure causal effects (1)

- Ideally we should do experiments:
 - e.g., experiment to estimate effect of access to microcredit on small enterprise revenue / household consumption / savings, etc.
- But almost always have to make do with *observational* (non-experimental) data
 - At best, data from "natural experiments"
 - Increasingly, behavioural finance, economics, management data come from class room experiments

Dates 00	Introduction	SND 000000000000	Estimators	Sampling Distributi
Causal H	Effects			

Using data to measure causal effects (2)

- What is the difficulty in using observational data when we wish to estimate causal effects?
 - Notion: Data generating process: empirical observations are outcome of (natural) "experiments"
 - The same experiment performed by "nature", leads to different outcomes (some randomness)
 - And, we have no control over the experiment of interest We need to:
 - identify the causes and factors relevant to the outcome of interest
 - To disentangle effects of the different causes on the outcome
 - To come to conclusions about these effects with some assurance about their level of accuracy, i.e., quantifying our uncertainty about conclusions

CAMBRIDGE Judge Business School

Dates 00	Introduction	SND 00000000000	$\begin{array}{c} \mathbf{Estimators} \\ 00000000000000000000000000000000000$	Sampling Distribution
Learni	ng points			

You will (learn) ...

- Statistics studies *sets* of objects/entities/things (firms, individuals, households ...)
- Statistics studies "causes of variation": If there is no variation, one individual describes the population
- You will learn
 - How to exploit variation (between observations in data) to estimate causal effects
 - Hands-on experience of regression with focus on applications theory only as needed
 - How to evaluate the other people's analysis understand empirical papers critically

Introduction

SND 00000000000 Estimators

Sampling Distribution

Quantitative research

Dates

Dates 00	Introduction	SND 00000000000	Estimators	Sampling Distribution
Paradign	n			

So, you (should) have a *useful* theory about the phenomenon of interest. You need to solve:

- the *Specification* problem specify a model from (your) theory. The mathematical form you think governs the population. You do not know (and will never *know*) the *parameters* of this
- the *Estimation* problem choose methods to *estimate* the unknown parameters governing the population, using sample data
- the *Inference* problem quantify the degree of uncertainty attached to these estimates, given that they are based on just one (random) sample

Dates 00 Introduction

Estimators

Sampling Distribution

Method

Step by step

- Formulate a model (based on hypotheses about the population)
- Gather data sample
- Estimate the model estimate population parameters
- Make inferences test hypotheses about the population
- Interpret results, in terms of the theory

 Dates
 Introduction
 SND
 Estimators
 Samp

 00
 000000000
 0000000000
 00000000000
 00000

Sampling Distribution

Review

Topics today:

- Data description: *Statistics* that summarise data these are always "estimates" of the unknown population parameters
- Probability principles: how can the world be described in terms of random variables and probability distributions (i.e., probability models)
- Next: Introduction to statistical inference: drawing conclusions about the *population* from only one sample, using probability principles

Further on...

- Estimation procedures for regression models: why and how they work
- Inference after regression: how to test hypothesis

Session 1: Normality, Estimators http://thiloklein.de

CAMBRIDGE Judge Business School

Dates

Introduction

ction

Estimators

Sampling Distribution

Using the Standard Normal distribution

SND Table

z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7957	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998

Session 1: Normality, Estimators

http://thiloklein.de

Sampling Distribution

What proportion of observations are smaller than 0.83?

Session 1: Normality, Estimators

http://thiloklein.de

CAMBRIDGE Judge Business School

Session 1: Normality, Estimators

http://thiloklein.de

18/ 50

Dates 00	Introduction 000000000	SND ○○○○○●○○○○○	$\begin{array}{c} \mathbf{Estimators} \\ 00000000000000000000000000000000000$	Sampling Distribution
Example	è.			

Inventories in a dealership

An inventory or resource management problem: A dealership's stock of new autos is replenished to 20 every month.

- Sales are lost due to stockouts
- Known that demand (X) within the month is normally distributed with a mean of 15 and a standard deviation of 6
- What is the probability of a stockout?

Session 1: Normality, Estimators

http://thiloklein.de

20/ 50

Dates
ooIntroduction
occoccoccoccSND
occoccoccoccoccoccEstimators
occoccoccoccoccSampling Distribution
occoccoccoccUsing the Standard Normal distribution (cont'd)

Solving for the stockout probability (cont'd)

• Convert x = 20 to its standard normal value

$$z = (x - \mu)/\sigma$$

= (20 - 15)/6
= 0.83

• Find area under SND to the right of z = 0.83

$$Pr(z > 0.83) = 1 - F(0.83)$$

= 1 - 0.797
= 0.20

• Probability of stockout = Pr(X > 20) = 0.2

http://thiloklein.de

CAMBRIDGE Judge Business School

Solving for the stockout probability (cont'd)

If the probability of stockout is to be no more than 5%, what should the reorder point be?

CAMBRIDGE Judge Business School

Session 1: Normality, Estimators

http://thiloklein.de

Session 1: Normality, Estimators http://thiloklein.de

Solving for the reorder point (cont'd)

- We know from the SND that $z_{0.05} = 1.645$
- We are interested in the corresponding x value

$$x = \mu + z_{0.05}\sigma$$

= 15 + 1.645 × 6
= 24.9

- Reorder point of 25 automobiles will keep probability of stockout at slightly less than 0.05
- By increasing reorder point from 20 to 25 the probability of stockout falls from .2 to 0.05

Dates	Introduction	SND	Estimators	Sampling Distribution
00	000000000	00000000000	•••••••	
Estimate	ors			

From the dist. of r.v. X, to the dist. of estimators

- Begin with a r.v. X and its probability distribution, $f(X, \theta)$ or $f_X(x; \theta_1, \dots, \theta_L)$, characteristic of the population
- Parameter (θ) is the fixed, but unknown value (or set of values) that describes the popln. distribution, e.g.: true mean and variance of a price distribution
- The number of parameters depends on the distribution. The Normal has two
- Note: Distributions have generating mechanisms
 - The Central Limit Theorem is an example of a generating process: a *stochastic* process that underlies the r.v. (average, in this case)
- A random vector variable (X_1, X_2, \dots, X_n) is characterized by its joint distribution: $f_{X_1,\dots,X_n}(x_1,\dots,x_n;\theta_1,\dots,\theta_K)$, e.g., a multivariate normal distribution

Dates	Introduction	SND	Estimators	Sampling Distributio
00	0000000000	00000000000	000000000000000000000000000000000000	
Detimetone				

Estimators

Definitions, contd.

- A statistic is any given function of observable values, which can be evaluated from a sample, e.g., $m = max(X_1, ..., X_n)$
- As a function of random variables, a statistic is itself a random variable
- An estimator (θ̂) is the sample counterpart of a(n unknown) population parameter (θ). It is a statistic, i.e., it can be calculated from observed values
- An estimate is the numerical value obtained when the estimator is applied to a specific sample
- Sampling distribution is the prob. distribution over values taken by estimates across all possible samples of the same size from the population

Dates	Introduc	
0	0000000	

SND

Estimators

Sampling Distribution

Estimators

- An estimator $\hat{\theta}$, is unbiased if $E(\hat{\theta}) = \mu_{\hat{\theta}} = \theta$
- If not, the estimator is biased

$$bias(\hat{\theta}) = E(\hat{\theta}) - \theta$$

- Q: Is the sample mean an unbiased estimator of the population mean?
- How can we find out whether $E[\bar{X}] = \theta$?

Dates

Introduction 000000000 SND 000000000000 Estimators

Sampling Distribution

Estimators

Efficiency

- Let $\hat{\theta}_1$ and $\hat{\theta}_2$ be two unbiased estimators of θ
- Estimator $\hat{\theta}_1$ is the more efficient of the two if $Var(\hat{\theta}_1) < Var(\hat{\theta}_2)$
- Among unbiased estimators, the one with the smallest variance is called the **best unbiased estimator**

Dates	Int
00	000

troduction

Estimators

Sampling Distribution

Estimators

Unbiasedness and Efficiency

Dates	Introduction
00	0000000000

SND

Estimators Sampling Distribution

Estimators

Ð

Dates	Introduction	SND	Estimators	Sampling Distribution
00	000000000	00000000000	00000000000000	0000000000

Estimators

Mean square error: resolving trade-off between bias and inefficiency

- Think in terms of a *loss function*, which reflects the cost of making errors, positive or negative, of different sizes
- A widely used loss function : Mean square error (MSE) of the estimator = E(square of deviation of estimator from true)

•
$$MSE(\hat{\theta}) = E[(\hat{\theta} - \theta)^2]$$
, which is $= \sigma_{\hat{\theta}}^2 + (\mu_{\hat{\theta}} - \theta)^2$

CAMBRIDGE Judge Business School

Introduction

Estimators

Sampling Distribution

Asymptotic properties of Estimators

Large sample (asymptotic) properties of estimators

- The *finite sample* distribution of an estimator may often not be known
- Even so, statisticians are often able to figure out the sampling distribution of estimators when n is large enough
- e.g., Central limit theorem
- One relevant concept here is Consistency of the estimator

- Assume $E(X) = \mu_X = 100$ and $s.d.(X) = \sigma_X = 50$
- We do not know these population parameters
- We use the sample mean to estimate the population mean

- How does the shape of the distribution change as the sample size is increased?
- The distribution is more concentrated about the pop. mean

CAMBRIDGE Judge Business School

- The distribution collapses to a spike at the true value
- $\sigma_X^2 \to 0$
- The sample mean is a consistent estimator of the population mean.

Session 1: Normality, Estimators http://thiloklein.de

 Introduction
 SND

 000000000
 00000

Estimators

Sampling Distribution

Asymptotic properties of Estimators

Large sample (Asymptotic) properties of any estimator $\hat{\theta}$ is to do with:

- How the sampling distribution of $\hat{\theta}_n$, where *n* is the size of the sample, changes when *n* increases towards infinity?
- $\hat{\theta}$ is a consistent estimator for θ if:

$$plim(\hat{\theta}) = \theta$$

i.e.,

$$Prob(\theta - \epsilon \le \hat{\theta}_n \le \theta + \epsilon) = 1 \text{ as } n \to \infty$$

Session 1: Normality, Estimators http://thiloklein.de

- $\hat{\theta}$ is an estimator of a population characteristic θ From the probability distribution of $\hat{\theta}$, $\hat{\theta}$ is biased upwards
- We will see soon that the sample variance (if measured as $\sum (X_i \bar{X})^2/n$ is biased downwards

CAMBRIDGE Judge Business School

Sampling Distribution

Example: biased in finite samples but consistent (cont'd)

The distribution collapses to a spike with larger samples

A

CAMBRIDGE Judge Business School

Session 1: Normality, Estimators http://thi

http://thiloklein.de

n = 20

z

Session 1: Normality, Estimators

http://thiloklein.de

39/ 50

Introduction

Dates

Distribution of a sample, $Y_1, ..., Y_n$, under random sampling

- Under simple random sampling:
 - We choose an individual (firm, household, stock, entity ...) at random from the population

Estimators

- Prior to sample selection, the value of Y is random because the individual is to be selected randomly
- Once the individual is selected, the value of Y is observed, and Y is not random
- The data set is $(Y_1, Y_2, ..., Y_n)$, Y_i = is the value of the r.v. pertaining to the i^{th} entity sampled

Introduction

Dates

Distribution of $Y_1, ..., Y_n$ under simple random sampling

- Because individuals i and j are selected at random, the value of Y_i has no information on the value of Y_j (independent events)
 - Y_i and Y_j are independently distributed
- Because Y_i and Y_j come from the same distribution
 - Y_i and Y_j are identically distributed
- So under simple random sampling, Y_i and Y_j are independently and identically distributed (i.i.d.)
- More generally, under simple random sampling, $\{Y_i\}$, i = 1, ..., n are i.i.d.
- Probability theory makes statistical inference about moments of population distributions simple when samples drawn from the population are *random*

The sampling distribution of \bar{Y}

Introduction

- \bar{Y} is a random variable, and its properties are given by the sampling distribution of \bar{Y}
 - The individuals in the sample are drawn at random; so the vector $(Y_1, ..., Y_n)$ is random

Estimators

- So functions of $(Y_1, ..., Y_n)$, such as \bar{Y} , are random. Different samples, different \bar{Y} values
- The distribution of \bar{Y} over each of the different possible samples of size n is the sampling distribution of \bar{Y}
- The mean and variance of \bar{Y} are the mean and variance of its sampling distribution: $E(\bar{Y})$ and $Var(\bar{Y})$
- The concept of sampling distribution underpins statistical analysis

Sampling Distribution

Things we want to know about the sampling distribution

- What is the mean of \overline{Y} ?
 - If $E(\bar{Y}) = \mu_Y$, then \bar{Y} is an *unbiased* estimator of μ_Y
- What is the variance of \overline{Y} ?
 - If the variance of \bar{Y} is lower than that of another estimators of μ , then \bar{Y} estimator is the more *efficient*

Estimators

- How does Var(Ȳ) depend on n?
 Does Ȳ tend to fall closer to μ as n grows large?
- if so, \bar{Y} is a *consistent* estimator of μ
- Can we pin down the probability distribution (i.e., the sampling distribution) of \bar{Y} ?

Introduction

Dates

Mean of the sampling distribution of \bar{Y}

• General case - i.e., for Y_i , i.i.d. from any distribution:

$$E(\bar{Y}) = E(\frac{1}{n}\sum_{i=1}^{n}Y_i) = \frac{1}{n}\sum_{i=1}^{n}E(Y_i) = \frac{1}{n}\sum_{i=1}^{n}\mu_Y = \mu_Y$$

Estimators

• \bar{Y} is an unbiased estimator of μ_Y $(E(\bar{Y}) = \mu_Y)$

CAMBRIDGE Judge Business School

SND

Introduction

Dates

Variance of the sampling distribution of \bar{Y}

$$Var(\bar{Y}) = E[(\bar{Y} - \mu_Y)^2]$$

= $E\left[\left(\left(\frac{1}{n}\sum_{i=1}^n Y_i\right) - \mu_Y\right)^2\right]$
= $E\left[\left(\frac{1}{n}\sum_{i=1}^n (Y_i - \mu_Y)\right)^2\right]$
= $E\left[\left(\frac{1}{n}\sum_{i=1}^n (Y_i - \mu_Y)\right] \times \left[\frac{1}{n}\sum_{j=1}^n (Y_j - \mu_Y)\right]\right]$

Estimators

Session 1: Normality, Estimators

http://thiloklein.de

CAMBRIDGE Judge Business School

Introduction

Dates

Variance of the sampling distribution of $\bar{Y}(2)$

SND

$$Var(\bar{Y}) = E\left[\left[\frac{1}{n}\sum_{i=1}^{n}(Y_{i}-\mu_{Y})\right] \times \left[\frac{1}{n}\sum_{j=1}^{n}(Y_{j}-\mu_{Y})\right]\right]$$
$$= \frac{1}{n^{2}}\sum_{i=1}^{n}\sum_{j=1}^{n}E\left[(Y_{i}-\mu_{Y})(Y_{j}-\mu_{Y})\right]$$
$$= \frac{1}{n^{2}}\sum_{i=1}^{n}\sum_{j=1}^{n}Cov(Y_{i},Y_{j}) = \frac{1}{n^{2}}\sum_{i=1}^{n}\sigma_{Y}^{2}$$
$$= \frac{\sigma_{Y}^{2}}{n}$$

Note: $Cov(Y_i, Y_j) = 0$ for $i \neq j$; $Cov(Y_i, Y_j) = Var(Y_i)$ for i = j

CAMBRIDGE Judge Business School

http://thiloklein.de

Estimators

Introduction

Variance of the sampling distribution of \overline{Y} - simpler

SND

$$Var(\bar{Y}) = Var\left[\frac{1}{n}\sum_{i=1}^{n}(Y_i)\right]$$
$$= \frac{1}{n^2}Var\left[\sum_{i=1}^{n}(Y_i)\right]$$

Recall: $V(Y_1 + Y_2) = V(Y_1) + V(Y_2) + 2Cov(Y_1, Y_2)$ But $Cov(Y_i, Y_j) = 0$ for $i \neq j$ (Why?) So:

$$Var(\bar{Y}) = \frac{1}{n^2} n V(Y_i)$$
$$= \frac{\sigma(Y)^2}{n}$$

Session 1: Normality, Estimators

http://thiloklein.de

Estimators

47/50

CAMBRIDGE Judge Business School

Introduction

Mean and variance of sampling distribution of \bar{Y}

$$E(\bar{Y}) = \mu_Y$$
$$Var(\bar{Y}) = \frac{\sigma_Y^2}{n}$$

Estimators

- \bar{Y} is an unbiased estimator of μ
- $Var(\bar{Y})$ is inversely proportional to n
- the spread (st. dev.) of the sampling distribution is proportional to $\frac{1}{\sqrt{n}}$
- Larger samples, less uncertainty: Consistent

The sampling distribution of \overline{Y} when n is large

- For small sample sizes, the distribution of \bar{Y} is complicated, but if n is large, the sampling distribution is simple!
- Law of Large Numbers
 - If $(Y_1, ..., Y_n)$ are i.i.d. and $\sigma_Y^2 < \infty$, then \bar{Y} is a consistent estimator of μ_Y : plim $(\bar{Y}) = \mu_Y$

Estimators

• \bar{Y} converges in probability to μ_Y

• i.e., as
$$n \to \infty$$
, $Var(\bar{Y}) = \frac{\sigma_Y^2}{n} \to 0$

Introduction

Dates

The Central Limit Theorem (CLT) statement

• If $(Y_1, ..., Y_n)$ are i.i.d. and $0 < \sigma_Y^2 < \infty$, then when n is *large*, the distribution of \overline{Y} is approximated well by a normal distribution

Estimators

- $\bar{Y} \sim N(\mu_Y, \frac{\sigma_Y^2}{n})$ approximately
- Standardized $\bar{Y} = \frac{\bar{Y} \mu_Y}{\frac{\sigma_Y}{2}} \sim N(0, 1)$ approximately
- The larger is n, the better the approximation

