MFin Econometrics I Session 2: Sampling distributions of estimators, Tests of hypotheses

Thilo Klein

University of Cambridge Judge Business School

Estimation ••••••• **Power** 0000

Point and Interval estimation

Point estimation

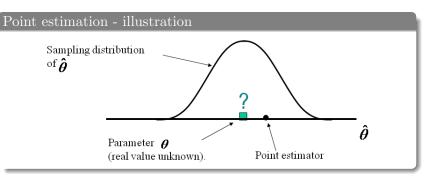
- A point estimator estimates the value of an unknown parameter in a population using a *single value*
- But we deal with random variables and therefore cannot have certainty
- Way forward?

Estimation ••••••••

Hypotheses

Power 0000

Point and Interval estimation



Point and Interval estimation

Interval estimation

- An interval estimator estimates the unknown parameter using a (small) *interval*, ...
- ...and the associated (high) probability that the population parameter is contained in that interval
- This takes account of sampling. The sample (to which the estimator is applied to obtain an estimate) is random
- Q: What is the smallest interval with a sufficiently high probability the most informative *interval*?

Hypotheses

Power 0000

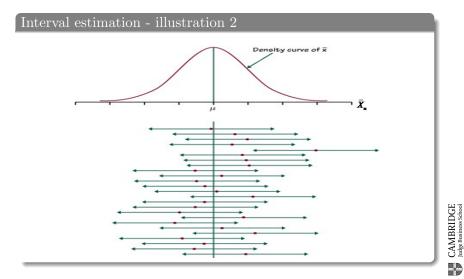
Point and Interval estimation

Interval estimation - illustration Sampling distribution 0.95 2 a b b $\hat{\theta}$ Parameter $\hat{\theta}$ Interval estimator

Hypotheses

Power 0000

Point and Interval estimation



Power 0000

Point and Interval estimation

Q: Interval estimation

- Question: Why not define an interval we can be *certain* of containing the true value?
- The only certain interval is $[-\infty, +\infty]!$

Point and Interval estimation

Confidence interval for a parameter θ ...

- ... is an interval on the line (the space in which θ can lie) that, given the sampling distribution of the estimator $\hat{\theta}$, contains θ with a specified (sufficiently high) probability
 - e.g., What is the interval [a, b] that will contain θ with probability of, say, 0.95 (i.e., $a \le \theta \le b$ with probability 0.95)?
 - Find a and b, and you have an interval estimate: [a, b] is the 95% confidence interval for θ
 - The price of defining a (small) interval [a, b], and not $(-\infty, \infty)$ is the (5%) probability that you necessarily allow that your interval estimate may be wrong (does not contain θ)
 - This probability split is yours to make: 99% 1% or 90% - 10%, any other, depending on the probability of being wrong that you can live with

Point and Interval estimation

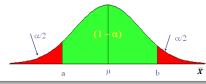
Confidence interval and Critical region for a test of hypothesis

- So, to test your (well reasoned) hypothesis about the unknown θ, you need to fix a and b;
- the region in the parameter space (the real line) outside [a, b] is the critical region for your test
 - What you are really asking is: Is the difference between your hypothesized θ and the estimated $\hat{\theta}$ attributable to the randomness of sampling?
 - Or is the difference between θ and $\hat{\theta}$ too large for it to be merely due to sampling variation?
 - If so, what should you do with your pet theory?

Point and Interval estimation

Confidence interval for μ

- Assume $X \sim N(\mu, \sigma)$ and that σ is known (or that n is large)
- $\bar{X} \sim N(\mu, \frac{\sigma}{\sqrt{n}})$ So the test statistic $\frac{\bar{X} \mu}{\frac{\sigma}{\sqrt{n}}} = Z \sim N(0, 1)$
- What probability (α) that your best interval estimate is wrong can you live with? (in testing hypotheses, α will be referred to as the size of the test). Let us fix $\alpha = 5\%$
- What are that values a and b, (with reference to $\frac{\bar{X}-\mu}{\frac{\sigma}{\sqrt{n}}} = Z \sim N(0,1)$) such that $Pr(a \le \mu \le b) = 1 \alpha$?

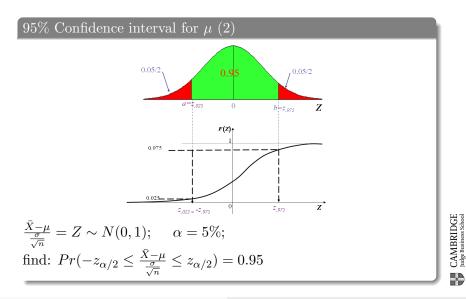


http://thiloklein.de

Hypotheses

Power 0000

Point and Interval estimation



http://thiloklein.de

Hypotheses

Power 0000

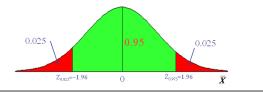
Point and Interval estimation

95% Confidence interval for μ (3)

$$Pr(-z_{\alpha/2}\frac{\sigma}{\sqrt{n}} + \bar{X} \le \mu \le z_{\alpha/2}\frac{\sigma}{\sqrt{n}} + \bar{X}) = 0.95$$

• From the standard Normal Table: $z_{.025} = -1.96$ $z_{.975} = 1.96$

•
$$Pr(-1.96\frac{\sigma}{\sqrt{n}} + \bar{X} \le \mu \le 1.96\frac{\sigma}{\sqrt{n}} + \bar{X}) = 0.95$$



CAMBRIDGE Judge Business School

Old example to illustrate types of errors in testing hypotheses

- A rare disease infects 1 person in a 1000
- There is good but imperfect test
- $\bullet~99\%$ of the time, the test identifies the disease
- $\bullet~2\%$ of uninfected patients also return a positive test result
- Null Hypothesis H_0 : Patient has the disease
- Alternate Hypothesis H_a : Patient does not
 - Q: Why not choose as H_0 : Patient does not has the disease?

Test of hypotheses example: Joint distribution

	A: patient	\overline{A} : patient	
	has disease	does not	
		have disease	
B: patient tests	0.00099	0.01998	P(B)
positive			= 0.02097
\overline{B} : patient does	0.00001	0.97902	$P(\overline{B})$
not test positive			= 0.97903
	P(A)	$P(\overline{A})$	1
	= 0.001	= 0.999	

Test of hypotheses example: correct decisions

	A: Patient has dis-	\overline{A} : Patient does
	ease	not have disease
B: Tests pos-	If you do not reject	
itive	H_0 : Correct de-	
	cision	
\overline{B} : patient		If you reject H_0 :
does not test		Correct decision
positive		

Test of hypotheses example: Type I error

	A: Patient has dis-	\overline{A} : Patient does
	ease	not have disease
B: Tests pos-	Correct decision	
itive		
\overline{B} : Does not	If you rejected (the	Correct decision
test positive	true) H_0 , Type I	
	error	

Test of hypotheses example: Type II error

	A: Patient has dis-	\overline{A} : Patient does	
	ease	not have disease	
B: Tests pos-	Correct decision	If you did not re-	
itive		ject (the false) H_0 ,	
		Type II error	
\overline{B} : Does not	Type I error	Correct decision	
test positive			

Hypotheses

Power 0000

Tests of hypothesis

H_0 : Patient has the disease H_a : Patient does not			
	Patient has disease	Patient does not	
B: Tests pos- itive	Correct decision	Prob(Type II error) =0.01998/0.999 = .02 = 2%	
\overline{B} : Does not test positive	$\begin{array}{l} {\rm Prob(Type \ I \ error)} \\ = 0.00001/0.001 \\ = 0.01 = 1\% \end{array}$	Correct decision	

- $P(\text{Error type I}) = P(\text{Reject } H_0 | H_0 \text{ true}) = \alpha = Size \text{ of test}$
- $P(\text{Error type II}) = P(\text{Not Reject } H_0 | H_0 \text{ false}) = \beta$
- $1 P(\text{Error type } II) = 1 \beta = Power of test$

Hypothesis tests - two points

- First:
 - Probability of Type I error, is the size of the test, α and is 1% in this example
 - Can it be changed? How?
- Second:
 - We can never have enough evidence to *accept* a null hypothesis
 - We suspend judgement if the evidence is against the alternative
 - We can only *reject* or *not reject* the null

Test of hypothesis: an example

A hypothesis about the impact of discounts on sales of automobiles

- Increased sales of Citreons after discount
- $\mu_0 = 1200$ hypothesized increase in UK sales of Citreons with discount
- $\sigma = 300$ assumed known population st. dev. of increase in sales with discount
- X random variable increase in sales of Citreons after discount
- A sample of 100 discount episodes observed: $\bar{X} = 1265$
- Frame a test:

Power 0000

Test of hypothesis: an example

Possible hypothesis tests for the mean: One or two tailed

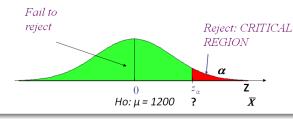
- $H_0: \ \mu = \mu_0 \text{ Vs. } H_a: \ \mu > \mu_0 \quad (1\text{-sided}, >)$
- $H_0: \ \mu = \mu_0 \text{ Vs. } H_a: \ \mu < \mu_0$ (1-sided, <)
- $H_0: \mu = \mu_0$ Vs. $H_a: \mu \neq \mu_0$ (2-sided)

Test of hypothesis: an example

Q: Sales of automobiles

- $H_0: \mu = 1200, H_a: \mu > 1200$
- Find a and b, using sample estimate \bar{X} , such that $Pr(a \le \mu \le b) = 1 \alpha$
- i.e., a and b, such that Under H_0 : Pr(test statistic does not lie in the critical region)=1 α

•
$$Pr\left(\frac{\bar{X}-\mu}{\frac{\sigma}{\sqrt{n}}} \le z_{\alpha}\right) = 1 - \alpha \ i.e., \ Pr\left(\frac{\bar{X}-1200}{\frac{300}{\sqrt{100}}} \le 1.645\right) = 0.95$$



http://thiloklein.de

CAMBRIDGE Judge Business School

Test of hypothesis: an example

Q: Sales of automobiles

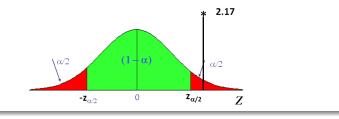
- The critical region is: $Pr\left(\frac{\bar{X}-1200}{\frac{300}{\sqrt{100}}} > 1.645\right)$
- Note that this is a one-tail test, so all 5% is on the right tail
- In this case: (1265 1200)/30 = 2.17 > 1.645
- So we reject the null hypothesis

Power 0000

Test of hypothesis: an example

Two tailed test: Sales of automobiles

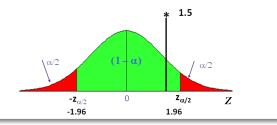
- $H_0: \mu = 1200, H_a: \mu \neq 1200$
- From the SND table, $z_{\alpha/2} = z_{.025} = 1.96$



Test of hypothesis: an example

Two tailed test: Sales of automobiles (2)

• Suppose our sample estimate is different: $\bar{X} = 1245$



Test of hypothesis: an example

p-value

- The significance level of a test is the pre-specified probability of incorrectly rejecting the null, when the null is true
- $\bullet\,$ e.g., if the pre-specified significance level is 5% (size of test):
 - you reject the null hypothesis in a two-tailed test if |standardised test statistic| ≥ 1.96
- **p-value** = probability of drawing a statistic (e.g. \bar{Y}) at least as adverse to the null as the value actually computed with your data, assuming that the null hypothesis is true
 - If significance level is 5%, you reject the null hypothesis if $p \leq 0.05$
 - The p-value is sometimes called the *marginal significance level*
 - It is better to report the p-value, than simply whether a test rejects or not
 - p-value contains more information than "reject/not reject"

Power 0000

Test of hypothesis: an example

Different Confidence Intervals

1-α	Confidence interval
0.5	$(\bar{X} - 0.67 \frac{\sigma}{\sqrt{n}}), \bar{X} + 0.67 \frac{\sigma}{\sqrt{n}})$
0.9	$(\bar{X} - 1.64\frac{\sigma}{\sqrt{n}}), \bar{X} + 1.64\frac{\sigma}{\sqrt{n}})$
0.95	$(\bar{X} - 1.96\frac{\sigma}{\sqrt{n}}), \bar{X} + 1.96\frac{\sigma}{\sqrt{n}})$
0.99	$(\bar{X} - 2.57 \frac{\sigma}{\sqrt{n}}), \bar{X} + 2.57 \frac{\sigma}{\sqrt{n}})$
0.999	$(\bar{X} - 3.27\frac{\sigma}{\sqrt{n}}), \bar{X} + 3.27\frac{\sigma}{\sqrt{n}})$

The more the degree of certainty (lower Pr(Type I error)) needed, the larger the interval

Tests of hypothesis: Power of the test

Type II errors: simulation

- You commit a type II error if you do not reject a false Null
- Error type II occurs if you do not reject a false Null
- $P[\text{Reject} \quad H_0|H_0 \text{ false}] = 1 P[\text{Error type II}] = \text{Power of the test}$
- Experiment to illustrate:
 - Generate data through i.i.d. draws from $N(\mu, 1)$ (simple random sampling)
 - Keep $\sigma^2 = 1$; but different values of μ in the interval [-2,2]
 - Always test the null: $H_0: \mu = 0$ against alternative: $H_a: \mu \neq 0$
 - Aim: determine the power of the test, i.e., the prob of not making type II errors, prob. of not rejecting the Null when it is false

Tests of hypothesis: Power of the test

Probability of not making type II errors: simulation (2)

- Sample mean (\bar{Y}) is the estimator of μ
- 3 sample sizes: 10, 100 and 1000, used for estimating (\bar{Y})
- Recall: Samples are from $N(\mu, 1)$ where μ is in [-2, 2]
- Critical region:
 - Size of the test fixed at 5%
 - We reject the null $(\mu = 0)$ if $|\bar{Y}| > c$, where c is determined by $P[-c \le \bar{Y} \le c] = 0.95$, for $\mu = 0$
 - As $\sigma = 1$, and the test is for $\mu = 0$, we have $c = 1.96/\sqrt{n}$
- Note: in most cases in this experiment, the null is false
- 10000 runs of each test. The proportion of times when H_0 is rejected is reported

Tests of hypothesis: Power of the test

$Pr(Reject H_0)$ reported in percentages

DGP:
$$Y_i \sim N(\mu, 1)$$
 for $\mu \in [-2, 2]$, including $\mu = 0$
 $H_0: \mu = 0; H_a: \mu \neq 0$

	population mean (actual)	n=10	n=100	n=1000
1-P(EII)	µ =-2	100	100	100
	μ = -1	89	100	100
	μ = -0.2	9.7	51.2	100
	µ = -0.1	6.4	17.3	88.5
	$\mu = -0.05$	5.4	7.3	35.5
El →	$\mu = 0$	5	4.7	4.8
($\mu = 0.05$	5.2	7.7	34.4
1-P(EII)	$\mu = 0.1$	6.4	16.7	88.3
	$\mu = 0.2$	9.5	51.6	100
	$\mu_{=1}$	88.4	100	100
l	µ =2	100	100	100

Session 2: Hypotheses

http://thiloklein.de

30/ 31

Tests of hypothesis: Power of the test

Probability of not making type II errors: simulation (3)

- The power of the test increases with the sample size
- The power of the test increases the further away is the true μ from the Null hypothesis μ
- For n = 1000 the null is rejected nearly always if DGP has $\mu < -0.1$ or $\mu > 0.1$
- Also: The smaller the probability of a Type 1 error, the greater the probability of Type II error (Show)
- Lesson: Choose the level of significance with care, and use as large a sample as possible