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t-distribution

What if σY is un-known? (almost always)

Recall: Ȳ ∼ N(µY ,
σY

2

n ) and Ȳ−µY
σY√
n

∼ N(0, 1)

If (Y1, ..., Yn) are i.i.d. (and 0 < σ2
Y <∞) then, when n is

large, the distribution of Ȳ is well approximated by a
normal distribution: Why? CLT
If (Y1, ..., Yn) are independently and identically drawn from
a Normal distribution, then for any value of n, the
distribution of Ȳ is normal: Why? Sums of normal r.v.s
are normal

But we almost never know σY . We use sample standard
deviation (sY ) to estimate the unknown σY
Consequence of using the sample s.d. in the place of the
population s.d. is an increase in uncertainty. Why?

sY /
√
n is the standard error of the mean : estimate from

sample, of st. dev. of sample mean, over all possible
samples of size n drawn from the population
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t-distribution

Using sY : “estimator” of σY

sY
2 = 1

sample size-1

∑sample size
i=1 (Yi − Ȳ )2

Why sample size - 1 in this estimator?
Degrees of freedom (d.f.): the number of independent
observations available for estimation. Sample size less the
number of (linear) parameters estimated from the sample

Use of an estimator (i.e., a random variable) for σY (and
thus, the use of an estimator for σȲ ) motivates use of the
fatter-tailed t-distribution in the place of N(0, 1)

The law of large numbers (LLN) applies to sY
2 : sY

2 is,
in fact, a “sample average” (How?)

LLN: If sampling is such that (Y1, ..., Yn) are i.i.d., (and if
E(Y 4) <∞), then sY

2 converges in probability to σY
2:

sY
2 is an average, not of Yi, but of its square (hence we

need E(Y 4) <∞)
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t-distribution

Aside: t-distribution probability density

f(t) =
Γ(d.f.+1

2 )
√
d.f.πΓ(d.f.2 )

(1 +
t2

d.f.
)−

d.f.+1
2

d.f. : Degrees of freedom: the only parameter of the
t-distribution;

Γ() (Gamma function): Γ(z) =
∫∞

0
tz−1e−tdt

Mean: E(t) = 0

Variance: V (t) = d.f./(d.f.− 2) for d.f. > 2 ≥ 1,
converges to 1 as d.f. increases (Compare: N(0, 1))
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t-distribution

t-distribution pdf and CDF: d.f.=3
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t-distribution

t - statistic

td.f. =
Ȳ − µ
sY /
√
n

d.f. = n− 1

test statistic for the sample average same form as
z-statistic: Mean 0, Variance → 1

If the r.v. Y is is normally distributed in population, the
test-statistic above for Ȳ is t-distributed with d.f. = n− 1
degrees of freedom
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t-distribution

t - distribution, table and use
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t-distribution

t→ SND

If d.f. is moderate or large (> 30, say) differences between
the t-distribution and N(0, 1) critical values are negligible

Some 5% critical values for 2-sided tests:

degree of freedom 5%t-distribution critical value

10 2.23

20 2.09

30 2.04

60 2.00

∞ 1.96
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t-distribution

Comments on t distribution, contd.

The t distribution is only relevant when the sample size is small.
But then, for the t distribution to be correct, the populn.
distrib. of Y must be Normal Why?

The popln r.v. (Ȳ ) must be Normally distributed for the
test-statistic (with σY estimated by sY ) to be t-distributed
If sample size small, CLT does not apply; the popln distrib.
of Y must be Normal for the popln. distrib. of Ȳ to be
Normal (sum of Normal r.v.s is Normal)

So if sample size small and σY estimated by sY , then
test-statistic to be t-distributed if popln. is Normally distributed
If sample size large (e.g., > 30), the popln. distrib. of Ȳ is
Normal irrespective of distrib. of Y - CLT (we saw that as d.f.
increases, distrib. of td.f. converges to N(0, 1))
Finance / Management data: Normality assumption dubious.
e.g., earnings, firm sizes etc.
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t-distribution

Comments on t distribution, contd.

So, with large samples,

or, with small samples, but with σ known, and a normal
population distribution

Pr(−zα/2 ≤
Ȳ − µ
σ/
√
n
≤ zα/2) = 1− α

Pr(Ȳ − zα/2
σ√
n
≤ µ ≤ Ȳ + zα/2

σ√
n

) = 1− α

Pr(Ȳ − 1.96
σ√
n
≤ µ ≤ Ȳ + 1.96

σ√
n

) = 0.95
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t-distribution

Comments on t distribution, contd.

With small samples (< 30 d.f.),

drawn from an approximately normal population
distribution,

with the unknown σ estimated with sY ,

for test statistic Ȳ−µ
sY /
√
n

:

Pr(Ȳ − td.f.,α/2
sY√
n
≤ µ ≤ Ȳ + td.f.,α/2

sY√
n

) = 1− α

Q: What is td.f.,α/2?
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Simple linear regression model

Population Linear Regression Model: Bivariate

Y = β0 + β1X + u

Interested in conditional probability distribution of Y given
X

Theory / Model : the conditional mean of Y given the
value of X is a linear function of X

X : the independent variable or regressor
Y : the dependent variable
β0 : intercept
β1 : slope
u : regression disturbance, which consists of effects of
factors other than X that influence Y , as also measurement
errors in Y
n : sample size, Yi = β0 + β1Xi + ui i = 1, · · · , n
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Simple linear regression model

Linear Regression Model - Issues

Issues in estimation and inference for linear regression
estimates are, at a general level, the same as the issues for
the sample mean

Regression coefficient is just a glorified mean

Estimation questions:

How can we estimate our model? i.e., “draw” a
line/plane/surface through the data ?
Advantages / disadvantages of different methods ?

Hypothesis testing questions:
How do we test the hypothesis that the population
parameters are zero?

Why test if they are zero?

How can we construct confidence intervals for the
parameters?
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Simple linear regression model

Regression Coefficients of the Simple Linear Regression Model

How can we estimate β0 and β1 from data?

Ȳ is the ordinary least squares (OLS) estimator of µY :
Can show that Ȳ solves:

minX

n∑
i=1

(Yi −X)2

By analogy, OLS estimators of the unknown parameters β0

and β1, solve:

minβ̂0, β̂1

n∑
i=1

(Yi − (β̂0 + β̂1Xi))
2
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Simple linear regression model

OLS in pictures (1)
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Simple linear regression model

OLS in pictures (2)
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Simple linear regression model

OLS in pictures (3)
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Simple linear regression model

OLS in pictures (4)
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Simple linear regression model

OLS method of obtaining regression coefficients

The sum : e2
1 + ..+ e2

n, is the Residual Sum of Squares
(RSS), a measure of total error

RSS is a function of both β̂0 and β̂1 (How?)

RSS = (Y1 − β̂0 − β̂1X1)2 + ..+ (Yn − β̂0 − β̂1Xn)2

=

n∑
i=1

(Yi − β̂0 − β̂1Xi)
2

Idea: Find values of β̂0 and β̂1 that minimise RSS
∂RSS(·)
∂β̂0

= −2
∑

(Yi − β̂0 − β̂1Xi) = 0

∂RSS(·)
∂β̂1

= −2
∑
Xi(Yi − β̂0 − β̂1Xi) = 0
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Simple linear regression model

Ordinary Least Squares, contd.

∂RSS
∂β̂0

= 0 and ∂RSS
∂β̂1

= 0

Solving these two equations together:

β̂1 =
1
n

∑
(Xi−X̄)(Yi−Ȳ )

1
n

∑
(Xi−X̄)2

=
∑

(Xi−X̄)(Yi−Ȳ )∑
(Xi−X̄)2

= Cov(X,Y )
V ar(X)

β̂0 = Ȳ − β̂1X̄
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Simple linear regression model

Linear Regression Model: Interpretation

Exercise
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Linear regression model: Evaluation

Measures of Fit (i): Standard Error of the Regression (SER)
and Root Mean Squared Error (RMSE)

Standard error of the regression (SER) is an estimate of
the dispersion (st.dev.) of the distribution of the
disturbance term, u;

Equivalently, of Y , conditional on X

How close are Y values to Ŷ values? can develop
confidence intervals around any prediction

SER =
√

1
n−2

∑n
i=1(ei − ē)2 =

√
1

n−2

∑n
i=1 ei

2

SER converges to root mean squared error (RMSE)

RMSE =
√

1
n

∑n
i=1(ei − ē)2 =

√
1
n

∑n
i=1 e

2
i

RMSE denominator has n SER has (n− 2)
Why?
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Linear regression model: Evaluation

Measures of Fit (ii): R2

How much of the variance in Y can we explain with our
model?

Without the model, the best estimate of Yi is the sample
mean Ȳ

With the model, the best estimate of Yi is conditional on
Xi and is the fitted value Ŷi = β̂0 + β̂1Xi

How much does the error in estimate of Y reduce with the
model?
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Linear regression model: Evaluation

Goodness of fit

The model: Yi = Ŷi + ei

V ar(Y ) = V ar(Ŷ + e)

= V ar(Ŷ ) + V ar(e) + 2Cov(Ŷ , e)
Why?

= V ar(Ŷ ) + V ar(e)

1

n

∑
(Y − Ȳ )2 =

1

n

∑
(Ŷ − ¯̂

Y )2 +
1

n

∑
(e− ē)2∑

(Y − Ȳ )2 =
∑

(Ŷ − ¯̂
Y )2 +

∑
(e− ē)2

Total Sum of Squares (TSS) = Explained Sum of Squares (ESS)
+ Residual Sum of Squares (RSS)

R2 =
ESS

TSS
=

∑
(Ŷi − Ȳ )2∑
(Yi − Ȳ )2
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Linear regression model: Evaluation

Goodness of fit

TSS = ESS +RSS

R2 = ESS
TSS =

∑
(Ŷi−Ȳ )2∑
(Yi−Ȳ )2

= 1−
∑
e2i∑

(Yi−Ȳ )2

√
R2 = Cov(Y,Ŷ )

st.dev.(Y )st.dev.(Ŷ )
= rY,Ŷ
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Properties of OLS Estimators

After regression estimates

In practical terms, we wish to:

quantify sampling uncertainty associated with β̂1

use β̂1 to test hypotheses such as β1 = 0
construct confidence intervals for β1

all these require knowledge of the sampling distribution of
the OLS estimators (based on the probability framework of
regression)
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Properties of OLS Estimators

Properties of Estimators and the Least Squares Assumptions

What kinds of estimators would we like?

unbiased, efficient, consistent

Under what conditions can these properties be guaranteed?

We focus on the sampling distribution of β̂1 (Why not β̂0?)

The results below do hold for the sampling distribution of
β̂0 too.
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Properties of OLS Estimators

Assumption 1: E(u|X = x) = 0

Session 3: Linear regression, OLS assumptions http://thiloklein.de 28/ 41

http://www.thiloklein.de


t-distribution LRM SER OLS Properties Further assumptions

Properties of OLS Estimators

Assumption 1: E(u|X = x) = 0

Conditional on X, u does not tend to influence Y either
positively or negatively.

Implication : Either X is not random, or,

If X is random, it is distributed independently of the
disturbance term, u: Cov(X,u) = 0

This will be true if there are no relevant omitted variables
in the regression model (i.e., those that are correlated to X)
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Properties of OLS Estimators

Assumption 1: Residual plots that pass and that fail
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Properties of OLS Estimators

Aside: include a constant in the regression

Suppose E(ui) = µu 6= 0

Suppose ui = µu + vi where vi ∼ N(0, σV
2)

Then Yi = β0 + β1Xi + vi + µu = (β0 + µu) + β1Xi + vi
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Properties of OLS Estimators

Assumption 2: (Xi, Yi), i = 1, ..., n are i.i.d.

This arises naturally with simple random sampling
procedure

Because most estimators are linear functions of
observations,

Independence between observations helps in obtaining the
sampling distributions of the estimators
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Properties of OLS Estimators

Assumption 3: Large outliers are rare

A large outlier is an extreme value of X or Y

Technically, E(X4) <∞ and E(Y 4) <∞
Note: If X and Y are bounded, then they have finite fourth
moments (income, etc.)

Rationale : a large outlier can influence the results
significantly
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Properties of OLS Estimators

Assumption 3: OLS sensitive to outliers

Session 3: Linear regression, OLS assumptions http://thiloklein.de 34/ 41

http://www.thiloklein.de


t-distribution LRM SER OLS Properties Further assumptions

Properties of OLS Estimators

Sampling distribution of β̂1

If the three Least Squares Assumptions (mean zero
disturbances, i.i.d. sampling, no large outliers) hold,

then the exact (finite sample) sampling distribution of β̂1 is
such that:

β̂1 is unbiased, that is, E(β̂1) = β1

V ar(β̂1) can be determined

Other than its mean and variance, the exact distribution of
β̂1 is complicated and depends on the distribution of (X,u)

β̂1 is consistent: β̂1 →p β1 plim(β̂1) = β1

So when n is large, β̂1−β1√
V ar(β̂1)

∼ N(0, 1) (by CLT)

This parallels the sampling distribution of Ȳ
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Properties of OLS Estimators

Mean of the sampling distribution of β̂1

Y = β0 + β1X + u

unbiasedness

β̂1 =
Cov(X,Y )

V ar(X)
=
Cov(X, [β0 + β1X + u])

V ar(X)

=
Cov(X,β0) + Cov(X,β1X) + Cov(X,u)

V ar(X)

=
0 + β1Cov(X,X) + Cov(X,u)

V ar(X)

= β1 +
Cov(X,u)

V ar(X)
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Properties of OLS Estimators

Unbiasedness of β̂1

β̂1 = Cov(X,Y )
V ar(X) = β1 + Cov(X,u)

V ar(X)

To investigate unbiasedness, take Expectation

E(β̂1) = β1 + 1
V ar(X)E(Cov(X,u)) = β1

Expected value of Cov(X,u) is zero (Why?)

β̂1 is an unbiased estimator of β1
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Linear regression model: further assumptions

Homoscedasticity and Normality of residuals

u is homoscedastic

u ∼ N(0, σu
2)

These assumptions are more restrictive

However, if these assumptions are not violated, then other
desirable properties obtain
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Linear regression model: further assumptions

Heteroscedasticity: one example
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Linear regression model: further assumptions

Normality of disturbances: histograms of residuals that ‘pass’
and ‘fail’
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Linear regression model: further assumptions

Normality of disturbances 2: q-q plots of residuals that ‘pass’
and ‘fail’
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