LRM SER 0000000000 0000 OLS Properties

Further assumptions

MFin Econometrics I Session 3: t-distribution, Simple Linear Regression, OLS assumptions and properties of OLS estimators

Thilo Klein

University of Cambridge Judge Business School

Session 3: Linear regression, OLS assumptions http://thiloklein.de

t-distribution	LRM	SER
•00000000	0000000000	0000

Further assumptions

t-distribution

What if σ_Y is un-known? (almost always)

• Recall:
$$\bar{Y} \sim N(\mu_Y, \frac{\sigma_Y^2}{n})$$
 and $\frac{\bar{Y} - \mu_Y}{\sigma_Y} \sim N(0, 1)$

- If (Y₁,...,Y_n) are i.i.d. (and 0 < σ²_Y < ∞) then, when n is large, the distribution of Ȳ is well approximated by a normal distribution: Why? CLT
- If $(Y_1, ..., Y_n)$ are independently and identically drawn from a Normal distribution, then for any value of n, the distribution of \overline{Y} is normal: Why? Sums of normal r.v.s are normal
- But we almost never know σ_Y . We use sample standard deviation (s_Y) to estimate the unknown σ_Y
- Consequence of using the sample s.d. in the place of the population s.d. is an increase in uncertainty. *Why?*
 - s_Y/√n is the standard error of the mean : estimate from sample, of st. dev. of sample mean, over all possible samples of size n drawn from the population

CAMBRIDGE Judge Business School

t-distribution	LRM	SER
00000000	0000000000	0000

Further assumptions

t-distribution

Using s_Y : "estimator" of σ_Y

•
$$s_Y^2 = \frac{1}{\text{sample size-1}} \sum_{i=1}^{\text{sample size}} (Y_i - \bar{Y})^2$$

- Why sample size 1 in this estimator?
- Degrees of freedom (d.f.): the number of *independent observations* available for estimation. Sample size less the number of (linear) parameters estimated from the sample
- Use of an *estimator* (i.e., a random variable) for σ_Y (and thus, the use of an estimator for $\sigma_{\bar{Y}}$) motivates use of the fatter-tailed *t*-distribution in the place of N(0, 1)
- The law of large numbers (LLN) applies to s_Y^2 : s_Y^2 is, in fact, a "sample average" (How?)
- LLN: If sampling is such that (Y₁,...,Y_n) are i.i.d., (and if E(Y⁴) < ∞), then s_Y² converges in probability to σ_Y²:
 s_Y² is an average, not of Y_i, but of its square (hence we need E(Y⁴) < ∞)

t-distribution	LRM	SER
00000000	0000000000	0000

Further assumptions

t-distribution

Aside: *t*-distribution probability density

$$f(t) = \frac{\Gamma(\frac{d.f.+1}{2})}{\sqrt{d.f.\pi}\Gamma(\frac{d.f.}{2})} (1 + \frac{t^2}{d.f.})^{-\frac{d.f.+1}{2}}$$

• *d.f.* : Degrees of freedom: the only parameter of the *t*-distribution;

• $\Gamma()$ (Gamma function): $\Gamma(z) = \int_0^\infty t^{z-1} e^{-t} dt$

- Mean: E(t) = 0
- Variance: V(t) = d.f./(d.f. 2) for $d.f. > 2 \ge 1$, converges to 1 as d.f. increases (Compare: N(0, 1))

t-distribution	LRM	SER
00000000	0000000000	0000

Further assumptions

t-distribution

t-distribution pdf and CDF: d.f.=3

t-distribution	LRM	SER
00000000	0000000000	0000

Further assumptions

t-distribution

t - statistic

$$t_{d.f.} = \frac{\bar{Y} - \mu}{s_Y / \sqrt{n}} \qquad d.f. = n - 1$$

- test statistic for the sample average same form as z-statistic: Mean 0, Variance $\rightarrow 1$
- If the r.v. Y is is normally distributed in population, the test-statistic above for \bar{Y} is t-distributed with d.f. = n 1 degrees of freedom

t-distribution	LRM	SE
000000000	0000000000	000

Further assumptions

t-distribution

t - distribution, table and use

$\begin{array}{c} t-\text{distribution} \\ \circ \circ \circ \circ \circ \circ \bullet \circ \circ \circ \end{array}$	LRM 0000000000	SER 0000	OLS Properties	Further assumptions
t-distribution	1			

$t \to \text{SND}$

- If d.f. is moderate or large (> 30, say) differences between the *t*-distribution and N(0, 1) critical values are negligible
- Some 5% critical values for 2-sided tests:

degree of freedom	5%t-distribution critical value
10	2.23
20	2.09
30	2.04
60	2.00
∞	1.96

t-distribution	LRM	SER	OLS Properties
00000000000	0000000000	0000	000000000000

Comments on t distribution, contd.

- The t distribution is only relevant when the sample size is small. But then, for the t distribution to be correct, the populn. distrib. of Y must be Normal Why?
 - The popln r.v. (\bar{Y}) must be Normally distributed for the test-statistic (with σ_Y estimated by s_Y) to be *t*-distributed
 - If sample size small, CLT does not apply; the popln distrib. of Y must be Normal for the popln. distrib. of \overline{Y} to be Normal (sum of Normal r.v.s is Normal)
- So if sample size small and σ_Y estimated by s_Y , then test-statistic to be *t*-distributed if popln. is Normally distributed
- If sample size large (e.g., > 30), the popln. distrib. of \overline{Y} is Normal irrespective of distrib. of Y - CLT (we saw that as d.f. increases, distrib. of $t_{d.f.}$ converges to N(0, 1))
- Finance / Management data: Normality assumption dubious. e.g., earnings, firm sizes etc.

t-distribution	LRM	SER
00000000000	0000000000	0000

Further assumptions

t-distribution

Comments on t distribution, contd.

- So, with large samples,
- \bullet or, with small samples, but with σ known, and a normal population distribution

$$Pr(-z_{\alpha/2} \le \frac{\bar{Y} - \mu}{\sigma/\sqrt{n}} \le z_{\alpha/2}) = 1 - \alpha$$
$$Pr(\bar{Y} - z_{\alpha/2}\frac{\sigma}{\sqrt{n}} \le \mu \le \bar{Y} + z_{\alpha/2}\frac{\sigma}{\sqrt{n}}) = 1 - \alpha$$
$$Pr(\bar{Y} - 1.96\frac{\sigma}{\sqrt{n}} \le \mu \le \bar{Y} + 1.96\frac{\sigma}{\sqrt{n}}) = 0.95$$

CAMBRIDGE Judge Business School

t-distribution	LRM	SER
000000000	000000000	0000

Further assumptions

t-distribution

Comments on t distribution, contd.

- With small samples (< 30 d.f.),
- drawn from an approximately normal population distribution,
- with the unknown σ estimated with s_Y ,

• for test statistic
$$\frac{\bar{Y}-\mu}{s_Y/\sqrt{n}}$$
:

$$Pr(\bar{Y} - t_{d.f.,\alpha/2}\frac{s_Y}{\sqrt{n}} \le \mu \le \bar{Y} + t_{d.f.,\alpha/2}\frac{s_Y}{\sqrt{n}}) = 1 - \alpha$$

Q: What is $t_{d.f.,\alpha/2}$?

LRM SE

OLS Properties

Further assumptions

Simple linear regression model

Population Linear Regression Model: Bivariate

 $Y = \beta_0 + \beta_1 X + u$

- Interested in conditional probability distribution of Y given X
- Theory / Model : the conditional mean of Y given the value of X is a linear function of X
 - X: the independent variable or regressor
 - Y : the dependent variable
 - β_0 : intercept
 - β_1 : slope
 - u: regression disturbance, which consists of effects of factors other than X that influence Y, as also measurement errors in Y

• n: sample size, $Y_i = \beta_0 + \beta_1 X_i + u_i$ $i = 1, \cdots, n$

 OLS Properties

Further assumptions

Simple linear regression model

Linear Regression Model - Issues

- Issues in estimation and inference for linear regression estimates are, at a general level, the same as the issues for the sample mean
- Regression coefficient is just a glorified mean
- Estimation questions:
 - How can we estimate our model? i.e., "draw" a line/plane/surface through the data ?
 - Advantages / disadvantages of different methods ?
- Hypothesis testing questions:
 - How do we test the hypothesis that the population parameters are *zero*?
 - Why test if they are zero?
 - How can we construct confidence intervals for the parameters?

CAMBRIDGE Judge Business School

LRM 000000000

OLS Properties

Further assumptions

Simple linear regression model

Regression Coefficients of the Simple Linear Regression Model

- How can we estimate β_0 and β_1 from data?
 - Y is the ordinary least squares (OLS) estimator of μ_Y :
 - Can show that \overline{Y} solves:

$$min_X \sum_{i=1}^n (Y_i - X)^2$$

• By analogy, OLS estimators of the unknown parameters β_0 and β_1 , solve:

$$min_{\hat{\beta}_0, \hat{\beta}_1} \sum_{i=1}^n (Y_i - (\hat{\beta}_0 + \hat{\beta}_1 X_i))^2$$

Session 3: Linear regression, OLS assumptions

http://thiloklein.de

t-distribution LRM SER OLS Properties Further assumptions

Ð

t-distribution LRM SER OLS Properties Further assumptions

Simple linear regression model

OLS in pictures (3)Y True model: $Y = \beta_0 + \beta_1 X + u$ Fitted line: $\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 X$ $\hat{\hat{Y}}_n = \hat{\beta}_0 + \hat{\beta}_1 X_n$ • Y_n $e_1 = Y_1 - \hat{Y}_1 = Y_1 - \hat{\beta}_0 - \hat{\beta}_1 X_1$ $\widetilde{\hat{Y}_1} = \hat{\beta}_{0} + \hat{\beta}_1 X_1$ $\hat{\beta}_{n}$

<u>x.</u> x

Χ.

CAMBRIDGE Judge Business School

Session 3: Linear regression, OLS assumptions http://thiloklein.de

LRM S

OLS Properties

Further assumptions

Simple linear regression model

OLS method of obtaining regression coefficients

- The sum : $e_1^2 + ... + e_n^2$, is the Residual Sum of Squares (RSS), a measure of total *error*
 - RSS is a function of both $\hat{\beta}_0$ and $\hat{\beta}_1$ (How?)

RSS =
$$(Y_1 - \hat{\beta}_0 - \hat{\beta}_1 X_1)^2 + ... + (Y_n - \hat{\beta}_0 - \hat{\beta}_1 X_n)^2$$

= $\sum_{i=1}^n (Y_i - \hat{\beta}_0 - \hat{\beta}_1 X_i)^2$

• Idea: Find values of $\hat{\beta}_0$ and $\hat{\beta}_1$ that minimise RSS • $\frac{\partial RSS(\cdot)}{\partial \hat{\beta}_0} = -2\sum (Y_i - \hat{\beta}_0 - \hat{\beta}_1 X_i) = 0$ • $\frac{\partial RSS(\cdot)}{\partial \hat{\beta}_1} = -2\sum X_i (Y_i - \hat{\beta}_0 - \hat{\beta}_1 X_i) = 0$

Session 3: Linear regression, OLS assumptions http://thiloklein.de

19/41

t-distribution LRM SER OLS Properties

Further assumptions

Simple linear regression model

Ordinary Least Squares, contd.

•
$$\frac{\partial RSS}{\partial \hat{\beta}_0} = 0$$
 and $\frac{\partial RSS}{\partial \hat{\beta}_1} = 0$

• Solving these two equations together:

•
$$\hat{\beta}_1 = \frac{\frac{1}{n}\sum(X_i - \bar{X})(Y_i - \bar{Y})}{\frac{1}{n}\sum(X_i - \bar{X})^2} = \frac{\sum(X_i - \bar{X})(Y_i - \bar{Y})}{\sum(X_i - \bar{X})^2} = \frac{Cov(X,Y)}{Var(X)}$$

• $\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{X}$

CAMBRIDGE Judge Business School

Further assumptions

Linear Regression Model: Interpretation

• Exercise

Session 3: Linear regression, OLS assumptions http://thiloklein.de

21/41

LRM SER 0000000000 •0000 OLS Properties

Further assumptions

Linear regression model: Evaluation

Measures of Fit (i): Standard Error of the Regression (SER) and Root Mean Squared Error (RMSE)

- Standard error of the regression (SER) is an estimate of the dispersion (st.dev.) of the distribution of the disturbance term, u;
- Equivalently, of Y, conditional on X
- How close are Y values to \hat{Y} values? can develop confidence intervals around any prediction

•
$$SER = \sqrt{\frac{1}{n-2}\sum_{i=1}^{n} (e_i - \bar{e})^2} = \sqrt{\frac{1}{n-2}\sum_{i=1}^{n} e_i^2}$$

- SER converges to root mean squared error (RMSE)
- $RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (e_i \bar{e})^2} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} e_i^2}$
- RMSE denominator has n SER has (n-2)Why?

• Why?

t-distribution
coordinationLRM
coordinationSER
coordinationOLS Properties
coordinationFurther assumptions
coordinationLinear regression model:Evaluation

Measures of Fit (ii): R^2

- How much of the variance in Y can we explain with our model?
- Without the model, the best estimate of Y_i is the sample mean \bar{Y}
- With the model, the best estimate of Y_i is conditional on X_i and is the fitted value $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i$
- How much does the error in estimate of Y reduce with the model?

t-distribution LRM SER OLS Properties Further assumptions

Linear regression model: Evaluation

Goodness of fit

• The model: $Y_i = \hat{Y}_i + e_i$

• Total Sum of Squares (TSS) = Explained Sum of Squares (ESS) + Residual Sum of Squares (RSS)

$$R^{2} = \frac{ESS}{TSS} = \frac{\sum (\hat{Y}_{i} - \bar{Y})^{2}}{\sum (Y_{i} - \bar{Y})^{2}}$$

Session 3: Linear regression, OLS assumptions http:/

http://thiloklein.de

CAMBRIDGE Judge Business School

x

Session 3: Linear regression, OLS assumptions

http://thiloklein.de

25/41

LRM S

OLS Properties

Further assumptions

Properties of OLS Estimators

After regression estimates

- In practical terms, we wish to:
 - quantify sampling uncertainty associated with $\hat{\beta}_1$
 - use $\hat{\beta}_1$ to test hypotheses such as $\beta_1 = 0$
 - construct confidence intervals for β_1
- all these require knowledge of the sampling distribution of the OLS estimators (based on the probability framework of regression)

CAMBRIDGE Judge Business School

LRM SI

OLS Properties

Further assumptions

Properties of OLS Estimators

Properties of Estimators and the Least Squares Assumptions

- What kinds of estimators would we like?
- unbiased, efficient, consistent
- Under what conditions can these properties be guaranteed?
- We focus on the sampling distribution of $\hat{\beta}_1$ (Why not $\hat{\beta}_0$?)
 - The results below do hold for the sampling distribution of $\hat{\beta}_0$ too.

LRM SER

OLS Properties

Further assumptions

Properties of OLS Estimators

LRM S

OLS Properties

Further assumptions

Properties of OLS Estimators

Assumption 1: E(u|X = x) = 0

- Conditional on X, u does not tend to influence Y either positively or negatively.
- Implication : Either X is not random, or,
- If X is random, it is distributed independently of the disturbance term, u: Cov(X, u) = 0
- This will be true if there are no relevant omitted variables in the regression model (i.e., those that are correlated to X)

LRM SER

OLS Properties

Further assumptions

Properties of OLS Estimators

LRM SER

OLS Properties

Further assumptions

Properties of OLS Estimators

Aside: include a constant in the regression

• Suppose
$$E(u_i) = \mu_u \neq 0$$

• Suppose
$$u_i = \mu_u + v_i$$
 where $v_i \sim N(0, \sigma_V^2)$

• Then
$$Y_i = \beta_0 + \beta_1 X_i + v_i + \mu_u = (\beta_0 + \mu_u) + \beta_1 X_i + v_i$$

CAMBRIDGE Judge Business School

LRM SI

OLS Properties

Further assumptions

Properties of OLS Estimators

Assumption 2: $(X_i, Y_i), i = 1, ..., n$ are i.i.d.

- This arises naturally with simple random sampling procedure
- Because most estimators are linear functions of observations,
- Independence between observations helps in obtaining the sampling distributions of the estimators

LRM S

OLS Properties

Further assumptions

Properties of OLS Estimators

Assumption 3: Large outliers are rare

- A large outlier is an *extreme* value of X or Y
- Technically, $E(X^4) < \infty$ and $E(Y^4) < \infty$
 - Note: If X and Y are bounded, then they have finite fourth moments (income, etc.)
- Rationale : a large outlier can influence the results significantly

Session 3: Linear regression, OLS assumptions http://thiloklein.de

LRM SER

OLS Properties

Further assumptions

Properties of OLS Estimators

Session 3: Linear regression, OLS assumptions http://thiloklein.de

LRM SI 0000000000 00 OLS Properties

Further assumptions

Properties of OLS Estimators

Sampling distribution of $\hat{\beta}_1$

- If the three Least Squares Assumptions (mean zero disturbances, i.i.d. sampling, no large outliers) hold,
- then the exact (finite sample) sampling distribution of $\hat{\beta}_1$ is such that:
 - $\hat{\beta}_1$ is unbiased, that is, $E(\hat{\beta}_1) = \beta_1$
 - $Var(\hat{\beta}_1)$ can be determined
 - Other than its mean and variance, the exact distribution of $\hat{\beta_1}$ is complicated and depends on the distribution of (X, u)
 - $\hat{\beta}_1$ is consistent: $\hat{\beta}_1 \rightarrow_p \beta_1$ $plim(\hat{\beta}_1) = \beta_1$
 - So when *n* is large, $\frac{\hat{\beta}_1 \beta_1}{\sqrt{Var(\hat{\beta}_1)}} \sim N(0, 1)$ (by CLT)
- \bullet This parallels the sampling distribution of \bar{Y}

LRM SER 0000000000 0000 OLS Properties

Further assumptions

Properties of OLS Estimators

Mean of the sampling distribution of $\hat{\beta}_1$

- $Y = \beta_0 + \beta_1 X + u$
- unbiasedness

$$\hat{\beta}_1 = \frac{Cov(X,Y)}{Var(X)} = \frac{Cov(X,[\beta_0 + \beta_1 X + u])}{Var(X)}$$

$$= \frac{Cov(X,\beta_0) + Cov(X,\beta_1 X) + Cov(X,u)}{Var(X)}$$

$$= \frac{0 + \beta_1 Cov(X,X) + Cov(X,u)}{Var(X)}$$

$$= \beta_1 + \frac{Cov(X,u)}{Var(X)}$$

CAMBRIDGE Judge Business School

Session 3: Linear regression, OLS assumptions http://thiloklein.de

LRM S

OLS Properties

Further assumptions

Properties of OLS Estimators

Unbiasedness of $\hat{\beta}_1$

•
$$\hat{\beta}_1 = \frac{Cov(X,Y)}{Var(X)} = \beta_1 + \frac{Cov(X,u)}{Var(X)}$$

- To investigate unbiasedness, take Expectation
- $E(\hat{\beta}_1) = \beta_1 + \frac{1}{Var(X)}E(Cov(X, u)) = \beta_1$
 - Expected value of Cov(X, u) is zero (Why?)
- $\hat{\beta}_1$ is an unbiased estimator of β_1

CAMBRIDGE Judge Business School

t-distribution
0000000000LRM
0000000000SER
0000OLS Properties
000000000000Further assumptions
0000Linear regression model:further assumptions

Homoscedasticity and Normality of residuals

- $\bullet~u$ is homoscedastic
- $u \sim N(0, {\sigma_u}^2)$
- These assumptions are more restrictive
- However, if these assumptions are not violated, then other desirable properties obtain

CAMBRIDGE Judge Business School

t-distribution LRM SER OLS Properties Fu

Normality of disturbances: histograms of residuals that 'pass' and 'fail'

CAMBRIDGE Judge Business School

Session 3: Linear regression, OLS assumptions

http://thiloklein.de

Further assumptions

0000

Linear regression model: further assumptions

SER.

LRM

Normality of disturbances 2: q-q plots of residuals that 'pass' and 'fail'

OLS Properties

CAMBRIDGE Judge Business School

Session 3: Linear regression, OLS assumptions

http://thiloklein.de

Further assumptions

0000