Specification	Heteroscedasticity	Autocorrelation	$\frac{Linearity}{000}$	Normality 000000

MFin Econometrics I Session 6: Model specification errors and consequences, Heteroscedasticity robust estimation, Testing for Autocorrelation, Linearity and Normality

Thilo Klein

University of Cambridge Judge Business School

Session 6: Misspecification, Robust estimates htt

http://thiloklein.de

Specification •••••• Heteroscedasticity

Autocorrelation

Linearity

Normality

Mis-specification in terms of variables

Consequences of mis-specification

		True Model		
		$Y = \beta_0 + \beta_1 X_1 + u$	$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + u$	
itted	$\hat{Y} = \hat{\beta_0} + \hat{\beta_1} X_1$			
Fit	$\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 X_1 \\ + \hat{\beta}_2 X_2$			

Heteroscedasticity

Autocorrelation

 $\underset{000}{\text{Linearity}}$

Normality 000000

Mis-specification in terms of variables

Consequences of mis-specification

		True Model		
		$Y = \beta_0 + \beta_1 X_1 + u Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + u$		
_	$\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 X_1$	Correct spec.,		
itted		no problems		
Fit	$\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 X_1 + \hat{\beta}_2 X_2$		Correct specification,	
	$+ \hat{\beta}_2 X_2$		no problems	

Heteroscedasticity

Autocorrelation

 $\underset{000}{\text{Linearity}}$

Normality

Mis-specification in terms of variables

Misspecification I: Omitting a relevant variable

		True Model		
		$Y = \beta_0 + \beta_1 X_1 + u Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + u$		
1	$\hat{Y} = \hat{\beta_0} + \hat{\beta_1} X_1$	Correct spec.,	Coefficients biased;	
itted		no problems	Standard errors invalid	
Fit	$\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 X_1 \\ + \hat{\beta}_2 X_2$		Correct specification,	
	$+\hat{\beta}_2 X_2$		no problems	

Heteroscedasticity

Autocorrelation

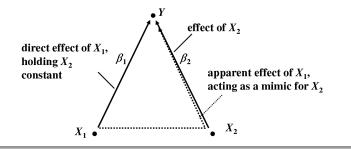
 $\underset{000}{\textbf{Linearity}}$

Normality

Mis-specification in terms of variables

Misspecification I: Omitting a relevant variable

True model: $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + u$ Fitted model: $\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 X_1$



CAMBRIDGE Judge Business School

Session 6: Misspecification, Robust estimates

http://thiloklein.de

Heteroscedasticity

Autocorrelation

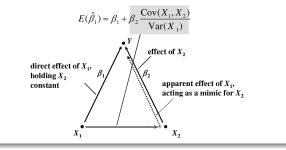
 $\underset{000}{\text{Linearity}}$

Normality

Mis-specification in terms of variables

Misspecification I: Omitting a relevant variable

True model: $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + u$ Fitted model: $\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 X_1$



Session 6: Misspecification, Robust estimates

http://thiloklein.de

Heteroscedasticity

Autocorrelation

 $\underset{000}{\text{Linearity}}$

Normality

Mis-specification in terms of variables

Misspecification II: Inclusion of an irrelevant variable

		True Model		
		$Y = \beta_0 + \beta_1 X_1 + u \qquad Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + u$		
_	$\hat{Y} = \hat{\beta_0} + \hat{\beta_1} X_1$	Correct spec.,	Coefficients biased;	
Fitted		no problems	Standard errors invalid	
Fit	$\hat{Y} = \hat{\beta_0} + \hat{\beta_1} X_1$	Coefs inefficient;	Correct specification,	
	$+\hat{\beta}_2 X_2$	Std. errors are valid	no problems	

Heteroscedasticity

Autocorrelation

Linearity 000 **Normality** 000000

Mis-specification in terms of variables

Misspecification II: Inclusion of an irrelevant variable

$$Y = \beta_0 + \beta_1 X_1 + u$$

• Let us say you include X_2 (which is irrelevant) as an explanatory variable

$$\hat{Y} = \hat{\beta_0} + \hat{\beta_1} X_1 + \hat{\beta_2} X_2$$

- What exactly have you estimated?
- Rewrite the true model adding X_2 as an explanatory variable, with a coefficient of 0

$$Y = \beta_0 + \beta_1 X_1 + 0X_2 + u$$

• Population variance of
$$\hat{\beta}_1 = \sigma_{\hat{\beta}_1}^2 = \frac{\sigma_u^2}{nVar(X_1)} \times \frac{1}{1 - r_{X_1, X_2}^2}$$

CAMBRIDGE Judge Business School

Heteroscedasticity

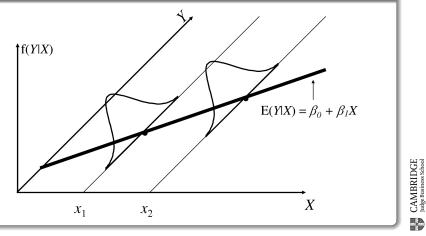
Autocorrelation

 $\underset{000}{\textbf{Linearity}}$

Normality

Homoskedasticity example

All observations have the same finite variance (homogeneity of variance)



http://thiloklein.de

Heteroscedasticity

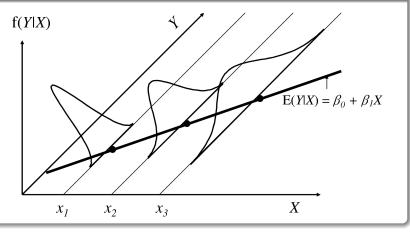
Autocorrelation

 $\underset{000}{\textbf{Linearity}}$

Normality

Heteroskedasticity example

Implication is that while OLS estimators are unbiased, the std errors are larger than they need to be!



http://thiloklein.de

CAMBRIDGE Judge Business School

Heteroscedasticity

Autocorrelation

 $\underset{000}{\textbf{Linearity}}$

Normality 000000

Tests for Heteroscedasticity

The Breusch-Pagan and White Tests

- Basic premise: if disturbances are homoscedastic, then squared errors are on average roughly constant.
- Regressors should NOT be able to predict squared errors, or their proxy, squared residuals.

Heteroscedasticity

Autocorrelation

Linearity

Normality 000000

Testing for Heteroscedasticity

Hypothesis

- Essentially, we want to test $H_0: Var(u|X_1, X_2, ..., X_K) = \sigma^2$
- which is equivalent to $H_0: E(u^2|X_1, X_2, ..., X_K) = \sigma^2$
- If we assume a possible linear relationship between u^2 and X_j , we can test:

$$H_0: \delta_1 = \delta_2 = \dots = \delta_k = 0$$

in the relationship

$$u^2 = \delta_0 + \delta_1 X_1 + \dots + \delta_k X_k + v$$

CAMBRIDGE Judge Business School

http://thiloklein.de

Steps in the Breusch-Pagan Test

Breusch-Pagan Test

- Regress Y against explanators using OLS
- Compute the OLS residuals, $e_1, ..., e_n$
- Regress e_i^2 against a constant, all the explanators: $X_1, X_2, ..., X_k$

 $BP \ test \ stastic = nR^2$

given the \mathbb{R}^2 from this auxiliary regression.

• This is asymptotically distributed $\chi^2(k-1)$ under the null hypothesis of homoscedasticity.

Note: the above (Lagrange Multiplier) version of the test does *not* depend on normal distribution of disturbance terms

Heteroscedasticity

Autocorrelation

 $\underset{000}{\text{Linearity}}$

Normality

The White Test for Heteroscedasticity

An extension of the Breusch-Pagan test, the White test

- The White test allows **nonlinearities** by using squares and cross-products of all the X's in the auxiliary regression.
- A similar test statistic as before can be used to test whether all the x_j , x_j^2 , and $x_j x_h$ are jointly significant.
- This can get to be unwieldy pretty quickly, burning through degrees of freedom very rapidly.
- Only appropriate for very large sample sizes.
- Failing this test (significant relationship between squares of residuals and squares and cross products of the explanatory variables) could also be an indication of misspecification of the functional form.
- Example

CAMBRIDGE Judge Business School Specification Heteroscedasticity Linearity Normality The mean and variance of the sampling distribution of $\hat{\beta}_1$ allowing heteroscedasticity

Autocorrelation

$$Y_i = \beta_0 + \beta_1 X_i + u_i$$

We have seen that:

$$\hat{\beta}_1 = \beta_1 + \frac{\sum_{i=1}^n (X_i - \bar{X}) u_i}{\sum_{i=1}^n (X_i - \bar{X})^2}$$

$$E(\hat{\beta}_1)$$

$$E(\hat{\beta}_1) - \beta_1 = E\left[\frac{\sum_{i=1}^n (X_i - \bar{X})u_i}{\sum_{i=1}^n (X_i - \bar{X})^2}\right] = 0; \text{ because } E(u_i | X_i = x) = 0$$

by assumption, so $\hat{\beta}_1$ is an unbiased estimator of β_1 .

CAMBRIDGE Judge Business School D

What if the errors are in fact homoskedastic?

The formula for the variance of $\hat{\beta}_1$ and the OLS standard error simplifies: If $var(u_i|X_i = x) = \sigma_u^2$, then

$$var(\hat{\beta}_1) = \frac{var[(X_i - \mu_x)u_i]}{n(\sigma_x^2)^2} = \frac{E[(X_i - \mu_x)^2 u_i^2]}{n(\sigma_x^2)^2} = \frac{\sigma_u^2}{n\sigma_x^2}$$

OLS has lowest variance among estimators that are linear in Y.

Homoskedasticity only standard error formula

$$SE(\hat{\beta}_1) = \sqrt{\frac{1}{n} \times \frac{\frac{1}{n-2} \sum_{i=1}^n \hat{u}_i^2}{\frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2}}$$

Heteroscedasticity

Autocorrelation

Linearity

Normality

$SE(\hat{\beta}_1)$ if the errors are heteroscedastic

The expression for the variance of $\hat{\beta}_1$:

$$var(\hat{\beta}_1) = \frac{var[(X_i - \mu_x)u_i]}{n(\sigma_x^2)^2} = \frac{\sigma_v^2}{n\sigma_x^2},$$

where $v_i = (X_i - \mu_x)u_i$. The estimator of the variance of $\hat{\beta}_1$ replaces the unknown population values of σ_v^2 and σ_x^2 by estimators constructed from the data:

$$\hat{\sigma}_{\beta_1}^2 = \frac{1}{n} \times \frac{\hat{\sigma}_v^2}{\hat{\sigma}_x^2} = \frac{1}{n} \times \frac{\frac{1}{n-2} \sum_{i=1}^n \hat{v}_i^2}{\frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2}$$

where $\hat{v}_i = (X_i - \bar{X})\hat{u}_i$.

http://thiloklein.de

Sampling distribution of $\hat{\beta}_1$

The exact sampling distribution of OLS estimators depends on the population distribution of (Y, X) - but when n is large we get some simple (and good) approximations:

- **9** Because $var(\hat{\beta}_1) \mapsto 1/n$ and $E(\hat{\beta}_1) = \beta_1, \ \hat{\beta}_1 \mapsto_p \beta_1$
- **2** When *n* is large, the sampling distribution of $\hat{\beta}_1$ is well approximated by a normal distribution (CLT)

Recall the CLT: suppose $\{v_i\}, i = 1, ..., n$ is i.i.d. with E(v) = 0and $var(v) = \sigma_v^2$. Then, when n is large, $\frac{1}{n} \sum_{i=1}^n v_i$ is approximately distributed $N(0, \sigma_v^2/n)$. Specification Heteroscedasticity Autocorrelation Linearity OCONOMIC Solution Solution of $\hat{\beta}_1$

Large-sample approximation

$$\hat{\beta}_1 \sim N(\beta_1, \frac{\sigma_v^2}{n\sigma_x^2}),$$

where
$$v_i = (X_i - \mu_x)u_i$$
.

- $\hat{\beta}_1$ is unbiased
- $var(\hat{\beta}_1)$ is inversely proportional to n

homoscedasticity-only vs. "heteroscedasticity-robust"

- **Homoscedasticity-only** standard errors-these are valid only if the errors are homoskedastic.
- Heteroscedasticity-robust standard errors, valid whether or not the errors are heteroskedastic.
- The homoscedasticity-only formula for the standard error of $\hat{\beta}_1$ and the "heteroscedasticity-robust" formula differ-so in general, you get different standard errors using the different formulas.

Specification 0000000	Heteroscedasticity	Autocorrelation	Linearity 000	Normality 000000
Choice:				

How to proceed?

- If the errors are either homoscedastic or heteroscedastic, you can use heteroscedastic-robust standard errors
- If the errors are heteroscedastic and you use the homoscedasticity-only formula for standard errors, your standard errors will be wrong (the homoscedasticity-only estimator of the variance of $\hat{\beta}_1$ is inconsistent if there is heteroscedasticity).
- The two formulas coincide (when n is large) in the special case of homoscedasticity

Heteroscedasticity

Autocorrelation

Linearity

Normality

Robust estimation vs. Efficient estimation

Efficient estimation

- It is always possible to estimate robust standard errors for OLS estimates, BUT if we knew about the specific form of the heteroscedasticity, we could obtain more efficient estimates than OLS.
- The basic idea is to transform the model into one that has homoscedastic errors by weighting the squared residuals -therefore the name of the method, called weighted least squares.
- Methods: Weighted LS, Generalised LS, Feasible Generalised LS will be covered next term

Heteroscedasticity

Autocorrelation

Linearity

Normality

Robustness vs. efficiency

a) Robust estimations:

not as dependent on assumptions but need large samples Robust standard errors only have asymptotic (large sample) justification -with small sample sizes, inferences will not be correct

b) Efficient estimations:

need to incorporate the explicit specification (if known) of the disturbances into the model

- If the specification is correct, then, b) is more efficient.
- If the sample is large, then, a) is satisfactory

Heteroscedasticity

Autocorrelation

 $\underset{000}{\textbf{Linearity}}$

Normality 000000

Decision tree

Robust or as usual?



Heteroscedasticity

Autocorrelation

Linearity

Normality

Autocorrelation (Serial correlation)

IMPLICATION: Knowledge of one residual, helps to predict other residual(s)

Usual cause: Misspecification

- Omitted variable a serially correlated explanatory variable is omitted
- Incorrect functional form

Consequence:

- OLS estimators unbiased and consistent
- OLS estimators not efficient.
- Standard errors are wrong. Generally under-estimated. "t-statistics" tend to be higher.

 $Y_i = \beta_0 + \beta_1 X_i + u_i$

First-order serial correlation (or auto correlation) : AR(1)

$$u+i = \rho u_{i-1} + \epsilon_i \quad -1 < \rho < 1$$

with ε_i , white noise (the ε_i are independent and all have the same variance and mean 0). Note: the autocorrelation process may be more general, over k lags.

Preliminary diagnosis:

- OLS Time series graph of $e_i, t = 1, ..., n$.
- Scatterplot of e_i on e_{i-1} . If AR(1) model $u_i = \rho u_{i-1} + e_i$ holds, then we expect the scatterplot to be concentrated along a straight line through 0.

CAMBRIDGE Judge Business School

Specification 0000000	$\begin{array}{c} \mathbf{Heteroscedasticity} \\ 00000000000000000000000000000000000$	$\begin{array}{c} \mathbf{Autocorrelation} \\ \texttt{000000} \end{array}$	Linearity 000	Normality 000000
Autocorre	elation			

A test:

- If $\rho = 0$, then $u_i = \varepsilon_i$ and in that case the random errors u_i satisfy the i.i.d. assumption (no serial correlation).
- Hence a test for serial correlation is the test: $H_0: \rho = 0$.
- First step is to find estimator for ρ . If we replace u_i in the AR(1) model for the disturbance by e_i and estimate ρ by OLS, we obtain:

$$\rho = \frac{\sum_{i=2}^{n} e_i e_{i-1}}{\sum_{i=1}^{n} e_i^2}$$

• This is also the first-order autocorrelation coefficient of the time series e_i , i = 1, ..., n. The obvious thing to do is to use $\hat{\rho}$ to test whether $\rho = 0$. Instead of $\hat{\rho}$, a related quantity is used, the Durbin-Watson statistic d.

Autocorrelation Specification Heteroscedasticity Linearity Normality 000000 Durbin-Watson test for AR(1) autocorrelation

$d = \frac{\sum_{i=2}^{n} e_i e_{i-1}}{\sum_{i=1}^{n} e_i^2}$

Test statistic

- It can be shown that $d = 2(1 \hat{\rho})$
- Hence if $\hat{\rho}$ is close to 0 (no autocorrelation) then d is close to 2.
- If $\hat{\rho}$ is close to 1, then d is close to 0 and if $\hat{\rho}$ is close to -1, then d is close to 4.
- In large samples $d \mapsto 2 2\rho$
- No autocorrelation $d \mapsto 2$

Session 6: Misspecification, Robust estimates

28/39

Specification
0000000Heteroscedasticity
00000000Autocorrelation
000000Linearity
000Normality
000000Durbin-Watson test for AR(1) autocorrelation

Durbin-Watson test for AR(1) autocorrelation

- Critical values for the test of the null hypothesis of no autocorrelation depends on the specific values taken by the explanatory variables
- But lower and upper bounds for the critical values that do not depend on the X have been calculated by Durbin and Watson.
- Assumptions for the test: Constant term included; Normal disturbances, Lagged values of the dependent variable is not included as an explanator

 Specification
 Heteroscedasticity
 Autocorrelation
 Linearity
 Normality

 0000000
 000000
 00000
 00000
 00000
 00000

Breusch-Godfrey test for Autocorrelation

Durbin-Watson test for AR(1) autocorrelation

- An alternative to DW test is another (Lagrange Multiplier - LM) test which is also based on OLS residuals, e_i .
- The first step is an auxiliary linear regression with dependent variable e_i and independent variables $X_1, ..., X_K$, and e_{i-1} . Compute the R^2 of this regression.
- The test statistic is $LM = (n-1)R^2$ Note: we use n -1 observations in this auxiliary regression.
- If $H_0: \rho = 0$ is true than LM has a $\chi^2(1)$ distribution: 1d.f.
- We reject the null if LM > c, the critical value found from the χ^2 distribution.

Note: this is a test for the AR(1) form of autocorrelation. Will generalise to AR(p), next term.

CAMBRIDGE Judge Business School

Specification 0000000	Heteroscedasticity	Autocorrelation	Linearity ●○○	Normality 000000
Linearity				

In a bivariate relationship:

• scatter plot between the response variable and the predictor to see if nonlinearity is present.

In a multivariate relationship:

- Plot the residuals against each of the predictor variables in the regression model. If there is a clear nonlinear pattern, there is a problem of nonlinearity.
- We should see a random scatter of points, for each plots.
- Can estimate a **locally weighted regression** of residual on each explanatory variable to diagnose.
- Often a log transformation of positively skewed explanatory variables can help.

Another example.

CAMBRIDGE Judge Business School

Specification 0000000	Heteroscedasticity	Autocorrelation	$\begin{array}{c} \mathbf{Linearity} \\ \circ \bullet \circ \end{array}$	Normality 000000

Nonlinearity as an error in Model specification

Regression specification error test (RESET) for non-linearity

The test is based on creating new variables (based on the predictors) and refitting the model using those new variables to see if any of them would be significant.

- Procedure:
 - Regress Y on $X_1, X_2, ..., X_k$, obtain \hat{Y}
 - Calculate powers of the fitted values $\hat{Y}^2, \hat{Y}^3, \hat{Y}^4$
 - Refit the model with original regressors and these new powers of predicted values from the original regression, and powers of original regressors.
 - Under the **null that there is no functional form mis-specification**, that coefficients on these new variables should be zero. RESET is a test of this joint hypothesis.
- Logic: Polynomials in \hat{Y} and X_j can approximate a variety of non-linear relationships between Y and $X_1, X_2, ..., X_k$

 Specification
 Heteroscedasticity
 Autocorrelation
 Linearity
 Normality

 0000000
 0000000
 000000
 00000
 000000
 000000

More general model specification errors

More general model specification errors

- A model specification error can occur when one or more relevant variables are omitted from the model or one or more irrelevant variables are included in the model.
- There is no direct test for this type of error.

Specification 0000000	Heteroscedasticity	Autocorrelation	Linearity 000	Normality •00000
Normality				

Normality

- Normality is not required in order to obtain unbiased estimates of the regression coefficients.
 - But normality of the residuals necessary for some of the other tests for example the Breusch Pagan test of heteroscedasticity, Durbin Watson test of autocorrelation, etc.
 - Note: there is no requirement that the predictor variables be normally distributed. But regression is more effective if the predictor variables have a roughly symmetric distribution with a single mode and no outliers.
- After regression estimation, can obtain residuals.
- And then can use various tests for normality of the residuals.

CAMBRIDGE Judge Business School

Specification 0000000	Heteroscedasticity	Autocorrelation	Linearity 000	Normality 0 0 0000
Normality				

Normality

- Estimate the regression model
- Examine the residuals.
- Examine the histogram plot against the normal density overlaid on the plot.
- Kernel density: a histogram with narrow bins and moving average. Kernel density is the smoothed out contribution of each observed data point over a local neighbourhood of that data point.

Specification 0000000	Heteroscedasticity	Autocorrelation	Linearity 000	Normality 00●000
Normality				

Visualisation - pp-plot

- The **pp-plot** graphs a standardized normal probability plot.
- In a normal probability plot, the data are plotted against a theoretical normal distribution in such a way that the points should form an approximate straight line.
- Departures from this straight line indicate departures from normality.
 - The data are arranged from smallest to largest.
 - 2 The percentile of each data value is determined.
 - the z-score of each data value is calculated.
 - **4** z-scores are plotted against the percentiles of data values

PP-plot is sensitive to non-normality in the middle range of data.

Specification 0000000	Heteroscedasticity	Autocorrelation	Linearity 000	Normality 000 0 00
Normality				

Visualisation - qq-plot

- **qq-plots** plot the quantiles of a variable against the quantiles of a normal distribution.
- qq plot is sensitive to non-normality near the tails.
- The results from p-p plots and q-q plots show indications of non-normality,
- You could examine the results from p-p plots and q-q plots after different specifications that make sense (linear regression, double log regression, semi-log regression etc)
- Can form a judgement about it is possible to accept that the residuals are close to a normal distribution.

Heteroscedasticity

Autocorrelation

Linearity

Normality

Jarque-Bera test of normality

Jarque-Bera test of normality

- A standard normality test. There are others too.
- The test is based on properties on skewness and kurtosis of the normal distribution (Skew=0 and Kurtosis =3)
- Null Hypothesis: the residuals are normally distributed.
- Deviation from normality measured by:

$$JB = n(\frac{1}{6}S^2 + \frac{1}{24}(K-3)^2) \mapsto_d \chi_2^2$$

- JB statistic is distributed χ^2_2 under the Null hypothesis
- Reject normality if the p-value is below your chosen test size

Heteroscedasticity

Autocorrelation

 $\underset{000}{\text{Linearity}}$

Normality

Repairing Normality

Repairing Normality

- What is the pattern in the plot of residuals?
- Check alternative (non-linear) specifications that are appropriate.
- Deviations from normality could be due to outliers.
 - Find the reasons for outliers.
 - Data error? Correct the entry.
 - If not data error, and there is a **valid reason** for that observation,
 - then could use a dummy variable for that observation.