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Mis-specification in terms of variables

Consequences of mis-specification

True Model
Y = β0 + β1X1 + u Y = β0 + β1X1 + β2X2 + u

F
it

te
d

Ŷ = β̂0 + β̂1X1

Ŷ = β̂0 + β̂1X1

Ŷ = + β̂2X2
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Mis-specification in terms of variables

Consequences of mis-specification

True Model
Y = β0 + β1X1 + u Y = β0 + β1X1 + β2X2 + u

F
it

te
d

Ŷ = β̂0 + β̂1X1 Correct spec.,
no problems

Ŷ = β̂0 + β̂1X1 Correct specification,

Ŷ = + β̂2X2 no problems
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Mis-specification in terms of variables

Misspecification I: Omitting a relevant variable

True Model
Y = β0 + β1X1 + u Y = β0 + β1X1 + β2X2 + u

F
it

te
d

Ŷ = β̂0 + β̂1X1 Correct spec., Coefficients biased;
no problems Standard errors invalid

Ŷ = β̂0 + β̂1X1 Correct specification,

Ŷ = + β̂2X2 no problems
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Mis-specification in terms of variables

Misspecification I: Omitting a relevant variable

True model: Y = β0 + β1X1 + β2X2 + u

Fitted model: Ŷ = β̂0 + β̂1X1
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Mis-specification in terms of variables

Misspecification I: Omitting a relevant variable

True model: Y = β0 + β1X1 + β2X2 + u

Fitted model: Ŷ = β̂0 + β̂1X1
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Mis-specification in terms of variables

Misspecification II: Inclusion of an irrelevant variable

True Model
Y = β0 + β1X1 + u Y = β0 + β1X1 + β2X2 + u

F
it

te
d

Ŷ = β̂0 + β̂1X1 Correct spec., Coefficients biased;
no problems Standard errors invalid

Ŷ = β̂0 + β̂1X1 Coefs inefficient; Correct specification,

Ŷ = + β̂2X2 Std. errors are valid no problems
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Mis-specification in terms of variables

Misspecification II: Inclusion of an irrelevant variable

Y = β0 + β1X1 + u

Let us say you include X2 (which is irrelevant) as an
explanatory variable

Ŷ = β̂0 + β̂1X1 + β̂2X2

What exactly have you estimated?

Rewrite the true model adding X2 as an explanatory
variable, with a coefficient of 0

Y = β0 + β1X1 + 0X2 + u

Population variance of β̂1 = σ2
β̂1

= σ2
u

nV ar(X1) ×
1

1−r2X1,X2
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Homoskedasticity example

All observations have the same finite variance (homogeneity of
variance)
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Heteroskedasticity example

Implication is that while OLS estimators are unbiased, the std
errors are larger than they need to be!
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Tests for Heteroscedasticity

The Breusch-Pagan and White Tests

Basic premise: if disturbances are homoscedastic, then
squared errors are on average roughly constant.

Regressors should NOT be able to predict squared errors,
or their proxy, squared residuals.
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Testing for Heteroscedasticity

Hypothesis

Essentially, we want to test
H0 : V ar(u|X1, X2, ..., XK) = σ2

which is equivalent to H0 : E(u2|X1, X2, ..., XK) = σ2

If we assume a possible linear relationship between u2 and
Xj , we can test:

H0 : δ1 = δ2 = ... = δk = 0

in the relationship

u2 = δ0 + δ1X1 + ...+ δkXk + v
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Steps in the Breusch-Pagan Test

Breusch-Pagan Test

Regress Y against explanators using OLS

Compute the OLS residuals, e1, ..., en

Regress e2
i against a constant, all the explanators:

X1, X2, ..., Xk

BP test stastic = nR2

given the R2 from this auxiliary regression.

This is asymptoticaly distributed χ2(k − 1) under the null
hypothesis of homoscedasticity.

Note: the above (Lagrange Multiplier) version of the test does not
depend on normal distribution of disturbance terms
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The White Test for Heteroscedasticity

An extension of the Breusch-Pagan test, the White test

The White test allows nonlinearities by using squares
and cross-products of all the X’s in the auxiliary regression.

A similar test statistic as before can be used to test
whether all the xj , x

2
j , and xjxh are jointly significant.

This can get to be unwieldy pretty quickly, burning
through degrees of freedom very rapidly.

Only appropriate for very large sample sizes.

Failing this test (significant relationship between squares of
residuals and squares and cross products of the explanatory
variables) could also be an indication of misspecification of
the functional form.

Example
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The mean and variance of the sampling distribution of
β̂1 allowing heteroscedasticity

Yi = β0 + β1Xi + ui

We have seen that:

β̂1 = β1 +

∑n
i=1(Xi − X̄)ui∑n
i=1(Xi − X̄)2

E(β̂1)

E(β̂1)− β1 = E
[∑n

i=1(Xi−X̄)ui∑n
i=1(Xi−X̄)2

]
= 0; because E(ui|Xi = x) = 0

by assumption, so β̂1 is an unbiased estimator of β1.
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What if the errors are in fact homoskedastic?

The formula for the variance of β̂1 and the OLS standard error
simplifies: If var(ui|Xi = x) = σ2

u, then

var(β̂1) =
var[(Xi − µx)ui]

n(σ2
x)2

=
E[(Xi − µx)2u2

i ]

n(σ2
x)2

=
σ2
u

nσ2
x

OLS has lowest variance among estimators that are linear in Y .

Homoskedasticity only standard error formula

SE(β̂1) =

√
1

n
×

1
n−2

∑n
i=1 û

2
i

1
n

∑n
i=1(Xi − X̄)2
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SE(β̂1) if the errors are heteroscedastic

The expression for the variance of β̂1:

var(β̂1) =
var[(Xi − µx)ui]

n(σ2
x)2

=
σ2
v

nσ2
x

,

where vi = (Xi − µx)ui.
The estimator of the variance of β̂1 replaces the unknown
population values of σ2

v and σ2
x by estimators constructed from

the data:

σ̂2
β1 =

1

n
× σ̂2

v

σ̂2
x

=
1

n
×

1
n−2

∑n
i=1 v̂

2
i

1
n

∑n
i=1(Xi − X̄)2

where v̂i = (Xi − X̄)ûi.
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What about the Sampling distribution of β̂1

Sampling distribution of β̂1

The exact sampling distribution of OLS estimators depends on
the population distribution of (Y,X) - but when n is large we
get some simple (and good) approximations:

1 Because var(β̂1) 7→ 1/n and E(β̂1) = β1, β̂1 7→p β1

2 When n is large, the sampling distribution of β̂1 is well
approximated by a normal distribution (CLT)

Recall the CLT: suppose {vi}, i = 1, ..., n is i.i.d. with E(v) = 0
and var(v) = σ2

v . Then, when n is large, 1
n

∑n
i=1 vi is

approximately distributed N(0, σ2
v/n).
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So, Large-n approximation to the distribution of β̂1

Large-sample approximation

β̂1 ∼ N(β1,
σ2
v

nσ2
x

),

where vi = (Xi − µx)ui.

β̂1 is unbiased

var(β̂1) is inversely proportional to n

Session 6: Misspecification, Robust estimates http://thiloklein.de 19/ 39

http://www.thiloklein.de


Specification Heteroscedasticity Autocorrelation Linearity Normality

In summary, there are two formulas for standard errors
for β̂1

homoscedasticity-only vs. ”heteroscedasticity-robust”

Homoscedasticity-only standard errors-these are valid
only if the errors are homoskedastic.

Heteroscedasticity-robust standard errors, valid
whether or not the errors are heteroskedastic.

The homoscedasticity-only formula for the standard error
of β̂1 and the ”heteroscedasticity-robust” formula differ-so
in general, you get different standard errors using the
different formulas.
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Choice:

How to proceed?

If the errors are either homoscedastic or heteroscedastic,
you can use heteroscedastic-robust standard errors

If the errors are heteroscedastic and you use the
homoscedasticity-only formula for standard errors, your
standard errors will be wrong (the homoscedasticity-only
estimator of the variance of β̂1 is inconsistent if there is
heteroscedasticity).

The two formulas coincide (when n is large) in the special
case of homoscedasticity
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Robust estimation vs. Efficient estimation

Efficient estimation

It is always possible to estimate robust standard errors for
OLS estimates, BUT if we knew about the specific form of
the heteroscedasticity, we could obtain more efficient
estimates than OLS.

The basic idea is to transform the model into one that has
homoscedastic errors by weighting the squared residuals
-therefore the name of the method, called weighted least
squares.

Methods: Weighted LS, Generalised LS, Feasible
Generalised LS will be covered next term
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Robustness vs. efficiency

a) Robust estimations:

not as dependent on assumptions but need large samples
Robust standard errors only have asymptotic (large sample)
justification -with small sample sizes, inferences will not be
correct

b) Efficient estimations:

need to incorporate the explicit specification (if known) of the
disturbances into the model

If the specification is correct, then, b) is more efficient.

If the sample is large, then, a) is satisfactory
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Decision tree

Robust or as usual?
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Autocorrelation (Serial correlation)

IMPLICATION: Knowledge of one residual, helps to predict
other residual(s)

Usual cause: Misspecification

Omitted variable - a serially correlated explanatory
variable is omitted

Incorrect functional form

Consequence:

OLS estimators unbiased and consistent

OLS estimators not efficient.

Standard errors are wrong. Generally under-estimated.
”t-statistics” tend to be higher.
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Autocorrelation: a common pattern AR(1)

Yi = β0 + β1Xi + ui

First-order serial correlation (or auto correlation) : AR(1)

u+ i = ρui−1 + εi − 1 < ρ < 1

with εi, white noise (the εi are independent and all have the
same variance and mean 0). Note: the autocorrelation process may

be more general, over k lags.

Preliminary diagnosis:

OLS Time series graph of ei, t = 1, ..., n.

Scatterplot of ei on ei−1. If AR(1) model ui = ρui−1 + ei
holds, then we expect the scatterplot to be concentrated
along a straight line through 0.
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Autocorrelation

A test:

If ρ = 0, then ui = εi and in that case the random errors ui
satisfy the i.i.d. assumption (no serial correlation).

Hence a test for serial correlation is the test: H0 : ρ = 0.

First step is to find estimator for ρ. If we replace ui in the
AR(1) model for the disturbance by ei and estimate ρ by
OLS, we obtain:

ρ =

∑n
i=2 eiei−1∑n
i=1 e

2
i

This is also the first-order autocorrelation coefficient of the
time series ei , i = 1, ..., n. The obvious thing to do is to
use ρ̂ to test whether ρ = 0. Instead of ρ̂, a related
quantity is used, the Durbin-Watson statistic d.
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Durbin-Watson test for AR(1) autocorrelation

d =

∑n
i=2 eiei−1∑n
i=1 e

2
i

Test statistic

It can be shown that d = 2(1− ρ̂)

Hence if ρ̂ is close to 0 (no autocorrelation) then d is close
to 2.

If ρ̂ is close to 1, then d is close to 0 and if ρ̂ is close to -1,
then d is close to 4.

In large samples d 7→ 2− 2ρ

No autocorrelation d 7→ 2
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Durbin-Watson test for AR(1) autocorrelation

Durbin-Watson test for AR(1) autocorrelation

Critical values for the test of the null hypothesis of no
autocorrelation depends on the specific values taken by the
explanatory variables

But lower and upper bounds for the critical values that do
not depend on the X have been calculated by Durbin and
Watson.

Assumptions for the test: Constant term included; Normal
disturbances, Lagged values of the dependent variable is
not included as an explanator
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Breusch-Godfrey test for Autocorrelation

Durbin-Watson test for AR(1) autocorrelation

An alternative to DW test is another (Lagrange Multiplier
- LM) test which is also based on OLS residuals, ei.

The first step is an auxiliary linear regression with
dependent variable ei and independent variables
X1, ..., XK , and ei−1. Compute the R2 of this regression.

The test statistic is LM = (n− 1)R2

Note: we use n -1 observations in this auxiliary regression.

If H0:ρ = 0 is true than LM has a χ2(1) distribution: 1d.f.

We reject the null if LM > c, the critical value found from
the χ2 distribution.

Note: this is a test for the AR(1) form of autocorrelation. Will
generalise to AR(p), next term.
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Linearity

In a bivariate relationship:

scatter plot between the response variable and the
predictor to see if nonlinearity is present.

In a multivariate relationship:

Plot the residuals against each of the predictor variables in
the regression model. If there is a clear nonlinear pattern,
there is a problem of nonlinearity.

We should see a random scatter of points, for each plots.

Can estimate a locally weighted regression of residual
on each explanatory variable to diagnose.

Often a log transformation of positively skewed
explanatory variables can help.

Another example.
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Nonlinearity as an error in Model specification

Regression specification error test (RESET) for non-linearity

The test is based on creating new variables (based on the
predictors) and refitting the model using those new variables to
see if any of them would be significant.

Procedure:

Regress Y on X1, X2, ..., Xk, obtain Ŷ
Calculate powers of the fitted values Ŷ 2, Ŷ 3, Ŷ 4

Refit the model with original regressors and these new
powers of predicted values from the original regression, and
powers of original regressors.
Under the null that there is no functional form
mis-specification, that coefficients on these new variables
should be zero. RESET is a test of this joint hypothesis.

Logic: Polynomials in Ŷ and Xj can approximate a variety
of non-linear relationships between Y and X1, X2, ..., Xk
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More general model specification errors

More general model specification errors

A model specification error can occur when one or more
relevant variables are omitted from the model or one or
more irrelevant variables are included in the model.

There is no direct test for this type of error.
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Normality

Normality

Normality is not required in order to obtain unbiased
estimates of the regression coefficients.

But normality of the residuals necessary for some of the
other tests – for example the Breusch Pagan test of
heteroscedasticity, Durbin Watson test of autocorrelation,
etc.
Note: there is no requirement that the predictor variables
be normally distributed. But regression is more effective if
the predictor variables have a roughly symmetric
distribution with a single mode and no outliers.

After regression estimation, can obtain residuals.

And then can use various tests for normality of the
residuals.
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Normality

Normality

Estimate the regression model

Examine the residuals.

Examine the histogram plot against the normal density
overlaid on the plot.

Kernel density: a histogram with narrow bins and moving
average. Kernel density is the smoothed out contribution of
each observed data point over a local neighbourhood of
that data point.
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Normality

Visualisation - pp-plot

The pp-plot graphs a standardized normal probability
plot.

In a normal probability plot, the data are plotted against a
theoretical normal distribution in such a way that the
points should form an approximate straight line.

Departures from this straight line indicate departures from
normality.

1 The data are arranged from smallest to largest.
2 The percentile of each data value is determined.
3 the z-score of each data value is calculated.
4 z-scores are plotted against the percentiles of data values

PP-plot is sensitive to non-normality in the middle range of
data.
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Normality

Visualisation - qq-plot

qq-plots plot the quantiles of a variable against the
quantiles of a normal distribution.

qq plot is sensitive to non-normality near the tails.

The results from p-p plots and q-q plots show indications
of non-normality,

You could examine the results from p-p plots and q-q plots
after different specifications that make sense (linear
regression, double log regression, semi-log regression etc)

Can form a judgement about it is possible to accept that
the residuals are close to a normal distribution.
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Jarque-Bera test of normality

Jarque-Bera test of normality

A standard normality test. There are others too.

The test is based on properties on skewness and kurtosis of
the normal distribution (Skew=0 and Kurtosis =3)

Null Hypothesis: the residuals are normally distributed.

Deviation from normality measured by:

JB = n(
1

6
S2 +

1

24
(K − 3)2) 7→d χ

2
2

JB statistic is distributed χ2
2 under the Null hypothesis

Reject normality if the p-value is below your chosen test
size
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Repairing Normality

Repairing Normality

What is the pattern in the plot of residuals?

Check alternative (non-linear) specifications that are
appropriate.

Deviations from normality could be due to outliers.

Find the reasons for outliers.
Data error? Correct the entry.
If not data error, and there is a valid reason for that
observation,
then could use a dummy variable for that observation.
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