Review	Bayes	RVs	$N(\mu, \sigma^2)$	Moments	Joint Dist.	Examples
0000	0000000000	000000000	000	0000000	0000000	000000

MPO1: Quantitative Research Methods Session 2: Random Variables and Probability Distributions

Thilo Klein

University of Cambridge Judge Business School

Session 2: RVs and Probability Distributions ht

http://thiloklein.de

Review	Bayes	RVs	$N(\mu, \sigma^2)$
0000	0000000000	000000000	000

Joint Dist. 0000000

Examples 000000

Probability Rules

Gambling consult from last week

- Chevalier de Mere to Blaise Pascal : What is more likely?
 - Rolling at least one 6 in four throws of a single die
 - Rolling at least one double 6 in 24 throws of a pair of dice

Review	Bayes	RVs	$N(\mu, \sigma^2)$
0000	0000000000	000000000	000

Joint Dist. 0000000

Examples 000000

Probability Rules

Review: Probability Rules

- $1 \ge P(A) \ge 0; P(S) = 1$
- Can combine events to make other events using logical operations: A and B, A or B, not A
- Probability of event A or B: Addition Rule $P(A \bigcup B) = P(A) + P(B) P(A \bigcap B)$
- If the events are A and B mutually exclusive: $P(A \bigcup B) = P(A) + P(B)$
- Probability of event AAndB: Multiplication Rule $P(A \cap B) = P(A) \cdot P(B)$ if the events are independent
- If not: $P(A \cap B) = P(A|B) \cdot P(B) = P(B|A) \cdot P(A)$
- For any event: $P(A) = 1 P(\overline{A})$

Moments

Joint Dist. 0000000 Examples

Gambling consult

Solution to de Mere's problem

- Let E be getting at least one Six in 4 throws of a single die
- What is P(E)?
 - \overline{E} is getting no Sixes in 4 throws
 - Let A_i be the event of getting *no Six* in the i^{th} throw

•
$$P(A_i) = 5/6$$
, so $P(\bar{E}) = (5/6)^4 = 0.482$

•
$$P(E) = 1 - P(\bar{E}) = 0.518$$

CAMBRIDGE Judge Business School ReviewBayesRVs $N(\mu, \sigma^2)$ 000•000000000000000000000

Moments 0000000

Joint Dist. 0000000 Examples 000000

Gambling consult (cont'd)

Solution to de Mere's problem

- Let F be event of getting at least one double Six in 24 throws
- What is P(F)?
 - Let B_i be the event of *no double Six* in the i^{th} throw.
 - $P(B_i) = ?$
 - $\overline{F} = B_1$ and B_2 and ... B_{24}
 - $P(\bar{F}) = (35/36)^{24} = 0.509$

•
$$P(F) = 1 - P(\bar{F}) = 0.491$$

• So: P(at least one Six in 4 throws) = 0.518 > P(at least one double Six in 24 throws) = 0.491

Question

• Example to illustrate conditional probability distributions, and hypothesis tests

Moments

Joint Dist.

- A rare disease infects 1 person in a 1000
- There is good but imperfect test
- 99% of the time, the test identifies the disease
- 2% of uninfected patients also return a positive test result
- A patient has tested positive
- What are the chances he actually has the disease?

Data

- Event A: patient has the disease
- Event B: Patient tests positive
- P(A) = 0.001
- P(B|A) = 0.99 Note: conditional probability
- $P(B|\overline{A}) = 0.02$ cond. prob.; False positive
- Question is: P(A|B)?
- We should also note other type of error, other than false positive
- False negative, i.e., testing negative though ill: $P(\overline{B}|A) = ?$

Moments

Joint Dist.

Joint Dist. 0000000 Examples 000000

Bayes' Theorem example

Sample space

	A: patient has disease	\overline{A} : patient does not have disease
B: patient tests pos- itive	$A \bigcap B$	$\overline{A} \bigcap B$
\overline{B} : patient does not test positive	$A \cap \overline{B}$	$\overline{A} \bigcap \overline{B}$

Moments
0000000

Joint Dist. 0000000

Examples 000000

Bayes' Theorem example

Conditional probability

	A: patient has	\overline{A} : patient does not
	disease	have disease
B: patient tests	$P(A \cap B)$	$\overline{A} \cap B$
positive	$= P(B A) \cdot P(A)$	
	$= 0.99 \cdot 0.001$	
	= 0.00099	
\overline{B} : patient does	$A \cap \overline{B}$	$\overline{A} \cap \overline{B}$
not test positive		

Recall: P(A) = 0.001; P(B|A) = 0.99; $P(B|\overline{A}) = 0.02$

Joint Dist. 0000000 Examples 000000

Bayes' Theorem example

Conditional probability (cont'd)

	A: patient has	\overline{A} : patient does not
	disease	have disease
B: patient tests	$P(A \cap B)$	$P(\overline{A} \cap B)$
positive	= P(B A)P(A)	$= P(B \overline{A})P(\overline{A})$
	$= 0.99 \cdot 0.001$	$=$ 0.02 \cdot 0.999
	= 0.00099	= 0.01998
\overline{B} : patient does	$A \cap \overline{B}$	$\overline{A} \cap \overline{B}$
not test positive		

Recall: P(A) = 0.001; P(B|A) = 0.99; $P(B|\overline{A}) = 0.02$

Review 0000	Bayes	RVs	$N(\mu, \sigma^2)$	Moments	Joint Dist.	Examples
	00000●0000	000000000	000	0000000	0000000	000000
Review						

Conditional Probability

- Conditional Probability of Event B given Event A has occurred: $P(B|A) = \frac{P(A \cap B)}{P(A)}$
- If A and B are mutually exclusive, P(B|A) = 0 = P(A|B)
- Events A and B are independent if: P(B|A) = P(B)
- Of course, P(A|A) = 1
- Rearranging the expression for conditional probability, Probability of Event AandB : $P(A \cap B) = P(B|A)P(A)$
- Note: P(A|B)P(B) = P(B|A)P(A)
- If A and B are independent, Multiplication Rule: $P(A \cap B) = P(A)P(B)$

CAMBRIDGE Judge Business School

Moments
0000000

Joint Dist. 0000000 Examples 000000

Marginal distribution					
	A: patient	\overline{A} : patient			
has disease		does not			
		have disease			
B: patient tests	0.00099	0.01998	P(B)		
positive			= 0.02097		
\overline{B} : patient does	$A \cap \overline{B}$	$\overline{A} \cap \overline{B}$	$P(\overline{B})$		
not test positive			= 0.97903		
	P(A)	$P(\overline{A})$	1		
	= 0.001	= 1 - P(A)			
		= 0.999			

Session 2: RVs and Probability Distributions

Moments
0000000

Joint Dist. 0000000 Examples 000000

Bayes' Theorem example

Joint distribution

	A: patient	\overline{A} : patient	
	has disease	does not	
		have disease	
B: patient tests	0.00099	0.01998	P(B)
positive			= 0.02097
\overline{B} : patient does	0.00001	0.97902	$P(\overline{B})$
not test positive			= 0.97903
	P(A)	$P(\overline{A})$	1
	= 0.001	= 0.999	

The Theorem

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(B|A)P(A)}{P(B)}$$
$$= \frac{P(B|A)P(A)}{P(B|A)P(A) + P(B|\overline{A})P(\overline{A})}$$

- Can compute P(A|B) from P(A), P(B), and the inverse conditional probability P(B|A)
- $P(A|B) = P(A \cap B)/P(B) = 0.00099/0.02097 = 0.0472$
- Probability that a person who tests positive has the disease is ≈ 0.05 !

Bayes' Theorem example

000000000

Baves

RVs

Conclusions

Review

• Only 5% of those who test positive have the disease !

 $N(\mu, \sigma^2)$

- $P(\overline{A}|B) = P(\overline{A} \cap B))/P(B) = 0.01998/0.02097 = 95\%$ (though P(B|A) = 99%)
 - Probability of *false positives*, P(B|A) = 0.02 given
 - In a group of 1000, on average, only 1 will have the disease, but 21 will test positive

Moments

Joint Dist.

- 20 false positives come from the much larger uninfected group
- But with a positive test, the chance of having the disease goes up from 1 in 1000 to 1 in 21
- Probability of false negatives, $P(\overline{B}|A)$? (Probability of having the disease though test is negative?)
 - = $P(A \cap \overline{B})/P(A) = 0.00001/0.001 = 1\%$

CAMBRIDGE Judge Business School

Review	Bayes	RVs	$N(\mu, \sigma^2)$
0000	0000000000	•00000000	000

Joint Dist. 0000000 Examples 000000

Random Variables

Random Variables: Review

- The outcome of an random "experiment" need not be a number
 - e.g., Coin toss : 'heads' or 'tails'
- To make progress we represent outcomes as numbers (but we pay attention to scale)
- We associate a unique real number with each elementary outcome of the experiment
 - Some set of real numbers represents the sample space of our random process
- The numerical value (outcome) will vary from trial to trial if the "experiment" is repeated
- The random variable (the experiment) is then characterized fully by its probability function

Joint Dist. 0000000 Examples 000000

Diaconis on tossing coins

Session 2: RVs and Probability Distributions

http://thiloklein.de

17/47

Joint Dist. 0000000 Examples 000000

Discrete Random variables

Discrete: Countable number of elementary events

- Probability distribution function (Probability mass function): list of values of the discrete random variable with their chances of occurring
- f(x) = Pr(X = x) Probability that random variable X takes value x
- Example: throwing a fair die, Sample space, $S = \{1, 2, 3, 4, 5, 6\}$ $f(x_i) = 1/6, x_i = 1, 2, ..., 6, \sum_{i=1}^6 f(x_i) = 1$

http://thiloklein.de

Cumulative Distribution Function

00000000 0

RVs

Baves

Review

Probability that a discrete random variable X takes on a value less than or equal to x

Moments

Joint Dist.

 $N(\mu, \sigma^2)$

• $F(x) = \sum_{X \le x} f(X) = Pr(X \le x)$ • $Pr(x_1 < X < x_2) = F(x_2) - F(x_1), x_2 > x_1$ • Pr(2 < X < 5) = F(5) - F(2)CDF: F(X)PDF: f(X)0.5 0.7 0.3 0.20.22 3 2 3

CAMBRIDGE Judge Business School

Session 2: RVs and Probability Distributions

http://thiloklein.de

Bayes $N(\mu, \sigma^2)$ 000000000000000 Discrete uniform distribution

RVs

Moments

Joint Dist.

Examples

Review

Session 2: RVs and Probability Distributions

http://thiloklein.de

20/47

Review 0000	Bayes 0000000000	RVs ○○○○○●○○○	$N(\mu, \sigma^2)$ 000	Moments 0000000	Joint Dist. 0000000	Examples 000000
Quiz						

Discrete random variable, probability and cumulative distribution functions

- Experiment: Throw a pair of fair dice
- X is a random variable defined as the *sum* of two die faces
- What does the probability distribution look like?
- What does the CDF look like?

Continuous Random variables

Baves

Review

RVs

0000000000

The variable (outcome) can take any real value in an *interval* on the real number line. This is the sample space

Moments

Joint Dist.

 $N(\mu, \sigma^2)$

- Probability density function (probability density function) f(X) is described graphically by a curve
- The area under the probability density function corresponds to probability: $\int_a^b f(X) dX = Pr(a \le X \le b)$
- $\int_{\text{Sample space}} f(X) dX = 1$ i.e., Pr(sample space) = 1
- If sample space is the set of real numbers, $\int_{-\infty}^{\infty} f(X) dX = 1$

Session 2: RVs and Probability Distributions

http://thiloklein.de

CAMBRIDGE Judge Business School

Cumulative distribution functions

000000000

RVs

Review

Baves

Continuous random variables and Cumulative distribution

 $N(\mu, \sigma^2)$

Moments

Joint Dist.

• The cumulative distribution function F()

•
$$F(x) = Pr(X \le x) = \int_{-\infty}^{x} f(V) dV$$

•
$$F(b) - F(a) = Pr(a \le X \le b) = \int_{a}^{b} f(X) dX$$

• Probability density f is the derivative of F

Examples

Session 2: RVs and Probability Distributions

http://thiloklein.de

D

Joint Dist. 0000000 Examples 000000

Uniform distribution

Session 2: RVs and Probability Distributions

http://thiloklein.de

Joint Dist. 0000000 Examples 000000

Normal distribution

 $X \sim N(\mu, \sigma^2)$

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$

 μ =mean, σ = st. dev., π = 3.14..., e = 2.71...

The normal distribution is, in fact, a family of distributions

Moments
0000000

Joint Dist. 0000000 Examples 000000

Normal distribution PDF

Session 2: RVs and Probability Distributions

Why is the Normal Distribution so common? Central Limit Theorem. Example

Session 2: RVs and Probability Distributions

http://thiloklein.de

Moments of a Random variable

RVs

Expectation

Baves

Review

• Characterizing the random variable in the *population* (not sample)

Moments

000000

Joint Dist.

• The first moment of a discrete random variable X: mean / expected value / expectation

$$E(X) = \mu = x_1 p_1 + \dots + x_n p_n = \sum_{i=1}^n x_i p_i$$

• p_i = probability that $X = x_i$ in the population

 $N(\mu, \sigma^2)$

Review Bayes RVs $N(\mu, \sigma^2)$ Moments Joint Dist. Examples concerned to the second sec

Expectation of functions of a Random variable, E(f(X))

- Is a function of a random variable a random variable?
- Expected value of functions of X

$$E(X^{2}) = x_{1}^{2}p_{1} + \ldots + x_{n}^{2}p_{n} = \sum_{i=1}^{n} x_{i}^{2}p_{i}$$

$$E[g(X)] = g(x_1)p_1 + \dots + g(x_n)p_n = \sum_{i=1}^n g(x_i)p_i$$

CAMBRIDGE Judge Business School

http://thiloklein.de

n

Joint Dist. 0000000

Examples 000000

Second Central Moment

The Second Central Moment of a Random variable

- Central moments: moments about the mean
- Second moment: Variance
- For a discrete random variable:

$$Var(X) = \sigma^2 = E\left((X - \mu)^2\right)$$

$$Var(X) = (x_1 - \mu)^2 p_1 + \dots + (x_n - \mu)^2 p_n = \sum_{i=1}^n (x_i - \mu)^2 p_i$$

Standard deviation = $\sqrt{\text{Variance}} = \sigma$

http://thiloklein.de

3rd and 4th Central Moments

3rd and 4th Central Moments of a Random variable

$$Skewness = \frac{E[(X - \mu)^3]}{\sigma^3}$$
$$Kurtosis = \frac{E[(X - \mu)^4]}{\sigma^4}$$

CAMBRIDGE

Session 2: RVs and Probability Distributions http://thiloklein.de

Quiz:

$$X_{new} = aX + b$$

- Mean of $X_{new} = ?$
- Median of $X_{new} = ?$
- Variance of $X_{new} = ?$

Session 2: RVs and Probability Distributions http://thiloklein.de

ReviewBayesRVs $N(\mu, \sigma^2)$ MomentsJoint Dist.Examples000

Adding independent random variables

Quiz:

- Mean and Variance of a sum of independent random variables
- Many useful *statistics* are linear combinations of data, i.e., of random variables
- If X and Y are *independent*:

•
$$E(X+Y) = ?$$

• Var(X+Y) = ?

ReviewBayesRVs $N(\mu, \sigma^2)$ MomentsJoint Dist.00000000000000000000000000000000000000

Moments of a Random variable

Quiz:

- Experiment: Throw a pair of fair dice, independently.
- Outcome = X =sum of the faces
- Mean?
- Variance?
- Skewness?

Joint distribution of Two Discrete Random variables

Example: $X =$	Example: $X =$ the sum of two independent die faces						S		
	red green	1	2	3	4	5	6		
_	1	2	3	4	5	6	7		
	2	3	4	5	6	7	8		
	3	4	5	6	7	8	9		
	4	5	6	7	8	9	10		
	5	6	7	8	9	10	11		
	6	7	8	9	10	11	12		

Session 2: RVs and Probability Distributions h

Joint distribution: Bivariate Normal distribution

Session 2: RVs and Probability Distributions

Joint distribution of two continuous random variables

Fig. 3: Distribution dynamics across countries (Relative output per worker) The right panel contains contour plots of the 15-year stochastic kernel in the left panel.

Session 2: RVs and Probability Distributions http://thiloklein.de

D

Joint distributions and Covariance

RVs

Baves

Review

The *covariance* between random variables X and Y:

 $N(\mu, \sigma^2)$

$$Cov(X,Y) = E[(X - \mu_X)(Y - \mu_Y)] = \mu_{XY}$$

Moments

- Measure of linear association between X and Y;
- Units: Units of $X \times$ Units of Y
 - Positive linear relation between X and Y: Cov(X, Y) > 0Negative: (Cov(X, Y) < 0)
 - If X and Y independently distributed: Cov(X, Y) = 0
 - But not vice versa!! (Why?)
- The Covariance of a r.v. with itself is its variance:

$$Cov(X, X) = E[(X - \mu_X)(X - \mu_X)] = E[(X - \mu_X)^2] = \sigma_X^2$$

Joint Dist.

RVs

Covariance between linear functions of r.v.s:

• Var(X+Y) = Var(X) + Var(Y) + 2Cov(X,Y)

 $N(\mu, \sigma^2)$

• Cov(X,Y):

0

Baves

Review

$$\begin{aligned}
\sigma_{XY} &= E\left((X - \mu_X)(Y - \mu_Y)\right) \\
&= E\left(XY - X\mu_Y - Y\mu_X + \mu_X\mu_Y\right) \\
&= E(XY) - \mu_X\mu_Y - \mu_X\mu_Y + \mu_X\mu_Y \\
&= E(XY) - \mu_X\mu_Y
\end{aligned}$$

Moments

Joint Dist.

0000000

• Likewise, can show: $Cov(a + bX + cV, Y) = b\sigma_{XY} + c\sigma_{VY}$

ReviewBayesRVs $N(\mu, \sigma^2)$ 0000000000000000000000000

Moments

Joint Dist.

Examples 000000

Correlation coefficient

Correlation coefficient: standardized Covariance

$$Corr(X,Y) = \frac{Cov(X,Y)}{\sqrt{Var(X)Var(Y)}} = \frac{\sigma_{XY}}{\sigma_X\sigma_Y} = \rho_{XY}$$

- $-1 \le \rho_{XY} \le 1$
- Perfect positive linear dependence: $\rho_{XY} = 1$
 - $Y = \beta_0 + \beta_1 X$ for some constants β_0 and $\beta_1 > 0$
- Perfect negative linear dependence: $\rho_{XY} = -1$

• $Y = \beta_0 + \beta_1 X$ for some constants β_0 and $\beta_1 < 0$

• No linear dependence: $\rho_{XY} = 0$

The correlation coefficient measures linear association

Session 2: RVs and Probability Distributions

http://thiloklein.de

41/47

Review	Bayes	RVs	$N(\mu, \sigma^2)$
0000	0000000000	000000000	000

Joint Dist. 0000000 Examples ••••••

Joint distributions, review

	X = -100	X = 100	
Y = -50	0.00099	0.01998	
Y = 50	0.00001	0.97902	

Review	Bayes	RVs	$N(\mu, \sigma^2)$
0000	0000000000	000000000	000

Joint Dist. 0000000 Examples

Marginal distributions

	X = -100	X = 100	Marginal distribution of Y
Y=-50	0.00099	0.01998	0.00099+0.01998= 0.02097
Y=50	0.00001	0.97902	0.00001 + 0.97902 = 0.97903
	0.001	0.999	

- Marginal distribution of X: $P(X = x) = \sum_{j} P(X = x, Y = y_j)$
- Marginal distribution of Y: $P(Y = y) = \sum_{i} P(X = x_i, Y = y)$

Conditional Distribution, Mean and Variance

 $N(\mu, \sigma^2)$

RVs

Example

Baves

Review

• Conditional distribution of Y, conditional on X = -100

	X = -100
Y=-50	P(Y = -50 X = -100) = 0.00099/0.001 = 0.99
Y=50	P(Y = 50 X = -100) = 0.00001/0.001 = 0.01

Moments

Joint Dist.

• Conditional Mean of Y, conditional on X = -100:

-50 * 0.99 + 50 * 0.01 = -49

• Conditional Variance of Y, conditional on X = -100:

$$(-50 - (-49))^2 * 0.99 + (50 - (-49))^2 * 0.01 = 99$$

Conditional Distribution, Conditional Mean

 $N(\mu, \sigma^2)$

Conditional distribution of Y given X:

RVs

Review

Baves

• Distribution of Y, given the value of X: P(Y = y | X = x)

$$P(Y = y|X = x) = \frac{P(Y = y, X = x)}{P(X = x)}$$

Moments

Joint Dist.

Examples

$$P(A|B) = \frac{P(A \text{ And } B)}{P(B)}$$

Conditional Mean=Mean of Conditional distribution

• Basic concept in regression

$$E(Y|X = x) = \sum_{j} y_j P(Y = y_j|X = x)$$

Session 2: RVs and Probability Distributions

http://thiloklein.de

Joint Dist. 0000000 Examples

Conditional Variance

Conditional Variance=Variance of Conditional distribution

$$\sigma_Y^2(x) = Variance(Y|X=x)$$

o denote
$$E(Y|X = x) = \mu_Y(x)$$

$$\sigma_Y^2(x) = \sum_j (y_j - \mu_Y(x))^2 \times P(Y = y_j|X = x)$$

Review	Bayes	RVs	$N(\mu, \sigma^2)$
0000	0000000000	000000000	000

Joint Dist. 0000000

Independence

If X and Y are **independent**:

• knowledge of X provides no information on Y, and vice versa

•
$$P(Y = y | X = x) = P(Y = y); P(A|B) = P(A)$$

•
$$P(X = x | Y = y) = P(X = x); P(B|A) = P(B)$$

•
$$P(X = x, Y = y) = P(X = x)P(Y = y);$$

 $P(A\&B) = P(A)P(B)$

CAMBRIDGE Judge Business School