# MPO1: Quantitative Research Methods <br> Session 2: Random Variables and Probability <br> Distributions 

## Thilo Klein

University of Cambridge
Judge Business School

## Probability Rules

## Gambling consult from last week

- Chevalier de Mere to Blaise Pascal : What is more likely?
- Rolling at least one 6 in four throws of a single die
- Rolling at least one double 6 in 24 throws of a pair of dice


## Probability Rules

## Review: Probability Rules

- $1 \geq P(A) \geq 0 ; P(S)=1$
- Can combine events to make other events using logical operations: $A$ and $B, \quad A$ or $B, \quad \operatorname{not} A$
- Probability of event $A$ or $B$ : Addition Rule $P(A \bigcup B)=P(A)+P(B)-P(A \bigcap B)$
- If the events are A and B mutually exclusive:
$P(A \cup B)=P(A)+P(B)$
- Probability of event $A$ And $B$ : Multiplication Rule $P(A \bigcap B)=P(A) \cdot P(B)$ if the events are independent
- If not: $P(A \bigcap B)=P(A \mid B) \cdot P(B)=P(B \mid A) \cdot P(A)$
- For any event: $P(A)=1-P(\bar{A})$


## Gambling consult

## Solution to de Mere's problem

- Let $E$ be getting at least one Six in 4 throws of a single die
- What is $P(E)$ ?
- $\bar{E}$ is getting no Sixes in 4 throws
- Let $A_{i}$ be the event of getting no Six in the $i^{\text {th }}$ throw
- $P\left(A_{i}\right)=5 / 6$, so $P(\bar{E})=(5 / 6)^{4}=0.482$
- $P(E)=1-P(\bar{E})=0.518$


## Gambling consult (cont'd)

## Solution to de Mere's problem

- Let $F$ be event of getting at least one double Six in 24 throws
- What is $P(F)$ ?
- Let $B_{i}$ be the event of no double Six in the $i^{\text {th }}$ throw.
- $P\left(B_{i}\right)=$ ?
- $\bar{F}=B_{1}$ and $B_{2}$ and $\ldots B_{24}$
- $P(\bar{F})=(35 / 36)^{24}=0.509$
- $P(F)=1-P(\bar{F})=0.491$
- So: $\mathrm{P}($ at least one Six in 4 throws $)=0.518>\mathrm{P}($ at least one double Six in 24 throws) $=0.491$


## Bayes' Theorem example

## Question

- Example to illustrate conditional probability distributions, and hypothesis tests
- A rare disease infects 1 person in a 1000
- There is good but imperfect test
- $99 \%$ of the time, the test identifies the disease
- $2 \%$ of uninfected patients also return a positive test result
- A patient has tested positive
- What are the chances he actually has the disease?


## Bayes' Theorem example

## Data

- Event $A$ : patient has the disease
- Event $B$ : Patient tests positive
- $P(A)=0.001$
- $P(B \mid A)=0.99 \quad$ Note: conditional probability
- $P(B \mid \bar{A})=0.02$ cond. prob.; False positive
- Question is: $P(A \mid B)$ ?
- We should also note other type of error, other than false positive
- False negative, i.e., testing negative though ill: $P(\bar{B} \mid A)=$ ?


## Bayes' Theorem example

## Sample space

|  | $A:$ patient has <br> disease | $\bar{A}:$ patient does <br> not have disease |
| :--- | :--- | :--- |
| $B:$ patient tests pos- <br> itive | $A \bigcap B$ | $\bar{A} \bigcap B$ |
| $\bar{B}:$ patient does not <br> test positive | $A \bigcap \bar{B}$ | $\bar{A} \cap \bar{B}$ |

## Bayes' Theorem example

## Conditional probability

|  | $A:$ patient has <br> disease | $\bar{A}:$ patient does not <br> have disease |
| :--- | :--- | :--- |
| $B:$ patient tests <br> positive | $P(A \bigcap B)$ <br> $=P(B \mid A) \cdot P(A)$ <br> $=0.99 \cdot 0.001$ <br> $=0.00099$ |  |
| $\bar{B}:$ patient does <br> not test positive | $A \bigcap \bar{B}$ |  |$\quad \bar{A} \bigcap \bar{B}$,

Recall: $P(A)=0.001 ; \quad P(B \mid A)=0.99 ; \quad P(B \mid \bar{A})=0.02$

## Bayes' Theorem example

## Conditional probability (cont'd)

|  | $A:$ patient has <br> disease | $\bar{A}$ : patient does not <br> have disease |
| :--- | :--- | :--- |
| $B:$ patient tests <br> positive | $P(A \bigcap B)$ <br> $=P(B \mid A) P(A)$ <br> $=0.99 \cdot 0.001$ <br> $=0.00099$ | $P(\bar{A} \bigcap B)$ <br> $=P(B \mid \bar{A}) P(\bar{A})$ <br> $=0.02 \cdot 0.999$ <br> $=0.01998$ |
| $\bar{B}:$ patient does <br> not test positive | $A \bigcap \bar{B}$ | $\bar{A} \bigcap \bar{B}$ |

Recall: $P(A)=0.001 ; \quad P(B \mid A)=0.99 ; \quad P(B \mid \bar{A})=0.02$

## Review

## Conditional Probability

- Conditional Probability of Event $B$ given Event $A$ has occurred:

$$
P(B \mid A)=\frac{P(A \bigcap B)}{P(A)}
$$

- If $A$ and $B$ are mutually exclusive, $P(B \mid A)=0=P(A \mid B)$
- Events $A$ and $B$ are independent if: $\quad P(B \mid A)=P(B)$
- Of course, $P(A \mid A)=1$
- Rearranging the expression for conditional probability, Probability of Event $A$ and $B: P(A \bigcap B)=P(B \mid A) P(A)$
- Note: $\quad P(A \mid B) P(B)=P(B \mid A) P(A)$
- If $A$ and $B$ are independent, Multiplication Rule:

$$
P(A \bigcap B)=P(A) P(B)
$$

## Bayes' Theorem example

## Marginal distribution

|  | $A:$ patient <br> has disease | $\bar{A}:$ patient <br> does not <br> have disease |  |
| :--- | :--- | :--- | :--- |
| $B:$ patient tests <br> positive | 0.00099 | 0.01998 | $P(B)$ <br> $=0.02097$ |
| $\bar{B}:$ patient does <br> not test positive | $A \bigcap \bar{B}$ | $\bar{A} \cap \bar{B}$ | $P(\bar{B})$ <br> $=0.97903$ |
|  | $P(A)$ <br> $=0.001$ | $P(\bar{A})$ <br> $=1-P(A)$ <br> $=0.999$ | 1 |

## Bayes' Theorem example

## Joint distribution

|  | $A:$ patient <br> has disease | $\bar{A}:$ patient <br> does not <br> have disease |  |
| :--- | :--- | :--- | :--- |
| $B:$ patient tests <br> positive | 0.00099 | 0.01998 | $P(B)$ <br> $=0.02097$ |
| $\bar{B}:$ patient does <br> not test positive | 0.00001 | 0.97902 | $P(\bar{B})$ <br> $=0.97903$ |
|  | $P(A)$ <br> $=0.001$ | $P(\bar{A})$ <br> $=0.999$ | 1 |

## Bayes' Theorem

## The Theorem

$$
\begin{aligned}
P(A \mid B) & =\frac{P(A \cap B)}{P(B)}=\frac{P(B \mid A) P(A)}{P(B)} \\
= & \frac{P(B \mid A) P(A)}{P(B \mid A) P(A)+P(B \mid \bar{A}) P(\bar{A})}
\end{aligned}
$$

- Can compute $P(A \mid B)$ from $P(A), P(B)$, and the inverse conditional probability $P(B \mid A)$
- $P(A \mid B)=P(A \bigcap B) / P(B)=0.00099 / 0.02097=0.0472$
- Probability that a person who tests positive has the disease is $\approx 0.05$ !


## Bayes' Theorem example

## Conclusions

- Only $5 \%$ of those who test positive have the disease!
- $P(\bar{A} \mid B)=P(\bar{A} \bigcap B)) / P(B)=0.01998 / 0.02097=95 \%$ (though $P(B \mid A)=99 \%$ )
- Probability of false positives, $\quad P(B \mid \bar{A})=0.02$ given
- In a group of 1000 , on average, only 1 will have the disease, but 21 will test positive
- 20 false positives come from the much larger uninfected group
- But with a positive test, the chance of having the disease goes up from 1 in 1000 to 1 in 21
- Probability of false negatives, $\quad P(\bar{B} \mid A)$ ?
(Probability of having the disease though test is negative?)
- $=P(A \bigcap \bar{B}) / P(A)=0.00001 / 0.001=1 \%$


## Random Variables

## Random Variables: Review

- The outcome of an random "experiment" need not be a number
- e.g., Coin toss : 'heads' or 'tails'
- To make progress we represent outcomes as numbers (but we pay attention to scale)
- We associate a unique real number with each elementary outcome of the experiment
- Some set of real numbers represents the sample space of our random process
- The numerical value (outcome) will vary from trial to trial if the "experiment" is repeated
- The random variable (the experiment) is then characterized fully by its probability function


## Diaconis on tossing coins



## Discrete Random variables

## Discrete: Countable number of elementary events

- Probability distribution function (Probability mass function): list of values of the discrete random variable with their chances of occurring
- $f(x)=\operatorname{Pr}(X=x) \quad$ Probability that random variable $X$ takes value $x$
- Example: throwing a fair die, Sample space,

$$
\begin{aligned}
& S=\{1,2,3,4,5,6\} \\
& f\left(x_{i}\right)=1 / 6, x_{i}=1,2, \ldots, 6, \sum_{i=1}^{6} f\left(x_{i}\right)=1
\end{aligned}
$$

## Cumulative Distribution Function

Probability that a discrete random variable $X$ takes on a value less than or equal to $x$

- $F(x)=\sum_{X \leq x} f(X)=\operatorname{Pr}(X \leq x)$
- $\operatorname{Pr}\left(x_{1} \leq X \leq x_{2}\right)=F\left(x_{2}\right)-F\left(x_{1}\right), x_{2} \geq x_{1}$
- $\operatorname{Pr}(2 \leq X \leq 5)=F(5)-F(2)$




## Discrete uniform distribution

Fair dice: $N=6, a=1, b=6$

-Prob. massfunction
-Distribution function

## Discrete random variable, probability and cumulative distribution functions

- Experiment: Throw a pair of fair dice
- $X$ is a random variable defined as the sum of two die faces
- What does the probability distribution look like?
- What does the CDF look like?


## Continuous Random variables

The variable (outcome) can take any real value in an interval on the real number line. This is the sample space

- Probability density function (probability density function) $f(X)$ is described graphically by a curve
- The area under the probability density function corresponds to probability: $\int_{a}^{b} f(X) d X=\operatorname{Pr}(a \leq X \leq b)$
- $\int_{\text {Sample space }} f(X) d X=1$ i.e., $\operatorname{Pr}$ (sample space $)=1$
- If sample space is the set of real numbers, $\int_{-\infty}^{\infty} f(X) d X=1$



## Cumulative distribution functions

## Continuous random variables and Cumulative distribution functions

- The cumulative distribution function $F()$
- $F(x)=\operatorname{Pr}(X \leq x)=\int_{-\infty}^{x} f(V) d V$
- $F(b)-F(a)=\operatorname{Pr}(a \leq X \leq b)=\int_{a}^{b} f(X) d X$
- Probability density $f$ is the derivative of $F$




## Uniform distribution

## Continuous uniform (rectangular) distribution. $U[0,1]$



## Normal distribution

$$
\begin{array}{r}
X \sim N\left(\mu, \sigma^{2}\right) \\
\qquad f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{\frac{-(x-\mu)^{2}}{2 \sigma^{2}}} \\
\mu=\text { mean, } \sigma=\text { st. dev., } \pi=3.14 \ldots, e=2.71 \ldots
\end{array}
$$



The normal distribution is, in fact, a family of distributions

## Normal distribution PDF

Normal distribution PDF. $\mu=1, \sigma=2$ )

——Prob. density $\quad$ Mean value $\quad$ - Selected probability

## Standard Normal distribution

Standard Normal, N(0,1): CDF (e.g., $F(1)=0.84$ ) and
Quantiles (e.g., $F^{-1}(.6)=0.25$ )


Why is the Normal Distribution so common? Central Limit Theorem. Example

## Moments of a Random variable

## Expectation

- Characterizing the random variable in the population (not sample)
- The first moment of a discrete random variable $X$ : mean / expected value / expectation

$$
E(X)=\mu=x_{1} p_{1}+\ldots+x_{n} p_{n}=\sum_{i=1}^{n} x_{i} p_{i}
$$

- $p_{i}=$ probability that $X=x_{i}$ in the population


## Moments of a Random variable (cont'd)

## Expectation of functions of a Random variable, $\mathrm{E}(\mathrm{f}(\mathrm{X}))$

- Is a function of a random variable a random variable?
- Expected value of functions of $X$

$$
\begin{gathered}
E\left(X^{2}\right)=x_{1}^{2} p_{1}+\ldots+x_{n}^{2} p_{n}=\sum_{i=1}^{n} x_{i}^{2} p_{i} \\
E[g(X)]=g\left(x_{1}\right) p_{1}+\ldots+g\left(x_{n}\right) p_{n}=\sum_{i=1}^{n} g\left(x_{i}\right) p_{i}
\end{gathered}
$$

## Second Central Moment

## The Second Central Moment of a Random variable

- Central moments: moments about the mean
- Second moment: Variance
- For a discrete random variable:

$$
\begin{gathered}
\operatorname{Var}(X)=\sigma^{2}=E\left((X-\mu)^{2}\right) \\
\operatorname{Var}(X)=\left(x_{1}-\mu\right)^{2} p_{1}+\cdots+\left(x_{n}-\mu\right)^{2} p_{n}=\sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2} p_{i}
\end{gathered}
$$

Standard deviation $=\sqrt{\text { Variance }}=\sigma$

## 3rd and 4th Central Moments

3rd and 4th Central Moments of a Random variable

$$
\begin{aligned}
& \text { Skewness }=\frac{E\left[(X-\mu)^{3}\right]}{\sigma^{3}} \\
& \text { Kurtosis }=\frac{E\left[(X-\mu)^{4}\right]}{\sigma^{4}}
\end{aligned}
$$

## Linear transformed Random variable

## Quiz:

$$
X_{n e w}=a X+b
$$

- Mean of $X_{n e w}=$ ?
- Median of $X_{n e w}=$ ?
- Variance of $X_{n e w}=$ ?


## Adding independent random variables

## Quiz:

- Mean and Variance of a sum of independent random variables
- Many useful statistics are linear combinations of data, i.e., of random variables
- If $X$ and $Y$ are independent:
- $E(X+Y)=$ ?
- $\operatorname{Var}(X+Y)=$ ?


## Moments of a Random variable

## Quiz:

- Experiment: Throw a pair of fair dice, independently.
- Outcome $=X=$ sum of the faces
- Mean?
- Variance?
- Skewness?


## Joint distribution of Two Discrete Random variables

## Example: $X=$ the sum of two independent die faces

| red <br> green | 1 | 2 | 3 | 4 | 5 | 6 |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| 5 | 6 | 7 | 8 | 9 | 10 | 11 |
| 6 | 7 | 8 | 9 | 10 | 11 | 12 |

## Joint distribution: Bivariate Normal distribution

## Independent r.v.s



## Joint distribution of two continuous random variables

## Danny Quah, 2000



Stochastic kernel

15-year-Horizon


Levels: $0.2,0.4,0.6$

Fig. 3: Distribution dynamics across countries (Relative output per worker) The right panel contains contour plots of the 15 -year stochastic kernel in the left panel.

## Joint distributions and Covariance

## The covariance between random variables $X$ and $Y$ :

$$
\operatorname{Cov}(X, Y)=E\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right]=\mu_{X Y}
$$

- Measure of linear association between $X$ and $Y$;
- Units: Units of $X \times$ Units of $Y$
- Positive linear relation between $X$ and $Y: \operatorname{Cov}(X, Y)>0$ Negative: $(\operatorname{Cov}(X, Y)<0)$
- If $X$ and $Y$ independently distributed: $\operatorname{Cov}(X, Y)=0$
- But not vice versa!! (Why?)
- The Covariance of a r.v. with itself is its variance:

$$
\operatorname{Cov}(X, X)=E\left[\left(X-\mu_{X}\right)\left(X-\mu_{X}\right)\right]=E\left[\left(X-\mu_{X}\right)^{2}\right]=\sigma_{X}^{2}
$$

## Covariance of functions of r.v.s

## Covariance between linear functions of r.v.s:

- $\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)+2 \operatorname{Cov}(X, Y)$
- $\operatorname{Cov}(X, Y)$ :

$$
\begin{aligned}
\sigma_{X Y} & =E\left(\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right) \\
& =E\left(X Y-X \mu_{Y}-Y \mu_{X}+\mu_{X} \mu_{Y}\right) \\
& =E(X Y)-\mu_{X} \mu_{Y}-\mu_{X} \mu_{Y}+\mu_{X} \mu_{Y} \\
& =E(X Y)-\mu_{X} \mu_{Y}
\end{aligned}
$$

- Likewise, can show: $\operatorname{Cov}(a+b X+c V, Y)=b \sigma_{X Y}+c \sigma_{V Y}$


## Correlation coefficient

Correlation coefficient: standardized Covariance

$$
\operatorname{Corr}(X, Y)=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}}=\frac{\sigma_{X Y}}{\sigma_{X} \sigma_{Y}}=\rho_{X Y}
$$

- $-1 \leq \rho_{X Y} \leq 1$
- Perfect positive linear dependence: $\rho_{X Y}=1$
- $Y=\beta_{0}+\beta_{1} X$ for some constants $\beta_{0}$ and $\beta_{1}>0$
- Perfect negative linear dependence: $\rho_{X Y}=-1$
- $Y=\beta_{0}+\beta_{1} X$ for some constants $\beta_{0}$ and $\beta_{1}<0$
- No linear dependence: $\rho_{X Y}=0$


## The correlation coefficient measures linear association


(a) Correlation $=+0.9$

(c) Correlation $=0.0$

(b) Correlation $=-0.8$

(d) Correlation $=0.0$ (quadratic)

## Joint distributions, review

## Example

|  | $X=-100$ | $X=100$ |  |
| :---: | :---: | :---: | :--- |
| $Y=-50$ | 0.00099 | 0.01998 |  |
| $Y=50$ | 0.00001 | 0.97902 |  |

## Marginal distributions

## Example

|  | $X=-100$ | $X=100$ | Marginal distribution of $Y$ |
| :---: | :---: | :---: | :---: |
| $\mathbf{Y}=\mathbf{- 5 0}$ | 0.00099 | 0.01998 | $0.00099+0.01998=\mathbf{0 . 0 2 0 9 7}$ |
| $\mathbf{Y}=\mathbf{5 0}$ | 0.00001 | 0.97902 | $0.00001+0.97902=\mathbf{0 . 9 7 9 0 3}$ |
|  | 0.001 | 0.999 |  |

- Marginal distribution of $X$ :

$$
P(X=x)=\sum_{j} P\left(X=x, Y=y_{j}\right)
$$

- Marginal distribution of $Y$ :

$$
P(Y=y)=\sum_{i} P\left(X=x_{i}, Y=y\right)
$$

## Conditional Distribution, Mean and Variance

## Example

- Conditional distribution of $Y$, conditional on $X=-100$

|  | $X=-100$ |
| :--- | :---: |
| $\mathbf{Y}=\mathbf{- 5 0}$ | $P(Y=-50 \mid X=-100)=0.00099 / 0.001=\mathbf{0 . 9 9}$ |
| $\mathbf{Y}=\mathbf{5 0}$ | $P(Y=50 \mid X=-100)=0.00001 / 0.001=\mathbf{0 . 0 1}$ |

- Conditional Mean of $Y$, conditional on $X=-100$ :

$$
-50 * 0.99+50 * 0.01=-49
$$

- Conditional Variance of $Y$, conditional on $X=-100$ :

$$
(-50-(-49))^{2} * 0.99+(50-(-49))^{2} * 0.01=\mathbf{9 9}
$$

## Conditional Distribution, Conditional Mean

## Conditional distribution of $Y$ given $X$ :

- Distribution of $Y$, given the value of $X: P(Y=y \mid X=x)$

$$
\begin{gathered}
P(Y=y \mid X=x)=\frac{P(Y=y, X=x)}{P(X=x)} \\
P(A \mid B)=\frac{P(A \text { And } B)}{P(B)}
\end{gathered}
$$

## Conditional Mean=Mean of Conditional distribution

- Basic concept in regression

$$
E(Y \mid X=x)=\sum_{j} y_{j} P\left(Y=y_{j} \mid X=x\right)
$$

## Conditional Variance

## Conditional Variance $=$ Variance of Conditional distribution

$$
\sigma_{Y}^{2}(x)=\operatorname{Variance}(Y \mid X=x)
$$

- denote $E(Y \mid X=x)=\mu_{Y}(x)$

$$
\sigma_{Y}^{2}(x)=\sum_{j}\left(y_{j}-\mu_{Y}(x)\right)^{2} \times P\left(Y=y_{j} \mid X=x\right)
$$

## Independence

## If $X$ and $Y$ are independent:

- knowledge of $X$ provides no information on $Y$, and vice versa
- $P(Y=y \mid X=x)=P(Y=y) ; P(A \mid B)=P(A)$
- $P(X=x \mid Y=y)=P(X=x) ; P(B \mid A)=P(B)$
- $P(X=x, Y=y)=P(X=x) P(Y=y)$; $P(A \& B)=P(A) P(B)$

