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Review Bayes RVs N(µ, σ2) Moments Joint Dist. Examples

Probability Rules

Gambling consult from last week

Chevalier de Mere to Blaise Pascal : What is more likely?

Rolling at least one 6 in four throws of a single die
Rolling at least one double 6 in 24 throws of a pair of dice
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Probability Rules

Review: Probability Rules

1 ≥ P (A) ≥ 0; P (S) = 1

Can combine events to make other events using logical
operations: A and B, A or B, not A

Probability of event A or B: Addition Rule
P (A

⋃
B) = P (A) + P (B)− P (A

⋂
B)

If the events are A and B mutually exclusive:
P (A

⋃
B) = P (A) + P (B)

Probability of event AAndB: Multiplication Rule
P (A

⋂
B) = P (A) · P (B) if the events are independent

If not: P (A
⋂
B) = P (A|B) · P (B) = P (B|A) · P (A)

For any event: P (A) = 1− P (Ā)
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Gambling consult

Solution to de Mere’s problem

Let E be getting at least one Six in 4 throws of a single die

What is P (E)?

Ē is getting no Sixes in 4 throws
Let Ai be the event of getting no Six in the ith throw
P (Ai) = 5/6, so P (Ē) = (5/6)4 = 0.482

P (E) = 1− P (Ē) = 0.518
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Gambling consult (cont’d)

Solution to de Mere’s problem

Let F be event of getting at least one double Six in 24
throws

What is P (F )?

Let Bi be the event of no double Six in the ith throw.
P (Bi) =?
F̄ = B1 and B2 and ... B24

P (F̄ ) = (35/36)24 = 0.509

P (F ) = 1− P (F̄ ) = 0.491

So: P(at least one Six in 4 throws) = 0.518 > P(at least
one double Six in 24 throws) = 0.491
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Bayes’ Theorem example

Question

Example to illustrate conditional probability distributions,
and hypothesis tests

A rare disease infects 1 person in a 1000
There is good but imperfect test
99% of the time, the test identifies the disease
2% of uninfected patients also return a positive test result
A patient has tested positive
What are the chances he actually has the disease?
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Bayes’ Theorem example

Data

Event A: patient has the disease

Event B: Patient tests positive

P (A) = 0.001

P (B|A) = 0.99 Note: conditional probability

P (B|A) = 0.02 cond. prob.; False positive

Question is: P (A|B)?

We should also note other type of error, other than false
positive

False negative, i.e., testing negative though ill: P (B|A) =?
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Bayes’ Theorem example

Sample space

A: patient has
disease

A: patient does
not have disease

B: patient tests pos-
itive A

⋂
B A

⋂
B

B: patient does not
test positive A

⋂
B A

⋂
B
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Bayes’ Theorem example

Conditional probability

A: patient has
disease

A: patient does not
have disease

B: patient tests
positive

P (A
⋂
B)

= P (B|A) · P (A)
= 0.99 · 0.001
= 0.00099

A
⋂
B

B: patient does
not test positive

A
⋂
B A

⋂
B

Recall: P (A) = 0.001; P (B|A) = 0.99; P (B|A) = 0.02
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Bayes’ Theorem example

Conditional probability (cont’d)

A: patient has
disease

A: patient does not
have disease

B: patient tests
positive

P (A
⋂
B)

= P (B|A)P (A)
= 0.99 · 0.001
= 0.00099

P (A
⋂
B)

= P (B|A)P (A)
= 0.02 · 0.999
= 0.01998

B: patient does
not test positive

A
⋂
B A

⋂
B

Recall: P (A) = 0.001; P (B|A) = 0.99; P (B|A) = 0.02
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Review

Conditional Probability

Conditional Probability of Event B given Event A has
occurred:
P (B|A) = P (A

⋂
B)

P (A)

If A and B are mutually exclusive,
P (B|A) = 0 = P (A|B)

Events A and B are independent if: P (B|A) = P (B)

Of course, P (A|A) = 1

Rearranging the expression for conditional probability,
Probability of Event AandB : P (A

⋂
B) = P (B|A)P (A)

Note: P (A|B)P (B) = P (B|A)P (A)

If A and B are independent, Multiplication Rule:
P (A

⋂
B) = P (A)P (B)
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Bayes’ Theorem example

Marginal distribution

A: patient
has disease

A: patient
does not
have disease

B: patient tests
positive

0.00099 0.01998 P (B)
= 0.02097

B: patient does
not test positive

A
⋂
B A

⋂
B P (B)

= 0.97903

P (A)
= 0.001

P (A)
= 1 − P (A)
= 0.999

1
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Bayes’ Theorem example

Joint distribution

A: patient
has disease

A: patient
does not
have disease

B: patient tests
positive

0.00099 0.01998 P (B)
= 0.02097

B: patient does
not test positive

0.00001 0.97902 P (B)
= 0.97903

P (A)
= 0.001

P (A)
= 0.999

1
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Bayes’ Theorem

The Theorem

P (A|B) =
P (A ∩B)

P (B)
=
P (B|A)P (A)

P (B)

=
P (B|A)P (A)

P (B|A)P (A) + P (B|A)P (A)

Can compute P (A|B) from P (A), P (B), and the inverse
conditional probability P (B|A)

P (A|B) = P (A
⋂
B)/P (B) = 0.00099/0.02097 = 0.0472

Probability that a person who tests positive has the disease
is ≈ 0.05 !
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Bayes’ Theorem example

Conclusions

Only 5% of those who test positive have the disease !

P (A|B) = P (A
⋂
B))/P (B) = 0.01998/0.02097 = 95%

(though P (B|A) = 99%)

Probability of false positives, P (B|A) = 0.02 given
In a group of 1000, on average, only 1 will have the disease,
but 21 will test positive
20 false positives come from the much larger uninfected
group
But with a positive test, the chance of having the disease
goes up from 1 in 1000 to 1 in 21

Probability of false negatives, P (B|A) ?
(Probability of having the disease though test is negative?)

= P (A
⋂
B)/P (A) = 0.00001/0.001 = 1%
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Random Variables

Random Variables: Review

The outcome of an random “experiment” need not be a
number

e.g., Coin toss : ‘heads’ or ‘tails’

To make progress we represent outcomes as numbers (but
we pay attention to scale)

We associate a unique real number with each elementary
outcome of the experiment

Some set of real numbers represents the sample space of our
random process

The numerical value (outcome) will vary from trial to trial
if the “experiment” is repeated

The random variable (the experiment) is then
characterized fully by its probability function
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Diaconis on tossing coins
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Discrete Random variables

Discrete: Countable number of elementary events

Probability distribution function (Probability mass
function): list of values of the discrete random variable
with their chances of occurring

f(x) = Pr(X = x) Probability that random variable X
takes value x

Example: throwing a fair die, Sample space,
S = {1, 2, 3, 4, 5, 6}
f(xi) = 1/6, xi = 1, 2, ..., 6,

∑6
i=1 f(xi) = 1
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Cumulative Distribution Function

Probability that a discrete random variable X takes on a value
less than or equal to x

F (x) =
∑

X≤x f(X) = Pr(X ≤ x)

Pr(x1 ≤ X ≤ x2) = F (x2)− F (x1), x2 ≥ x1
Pr(2 ≤ X ≤ 5) = F (5)− F (2)
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Discrete uniform distribution

Fair dice: N=6, a=1, b=6
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Quiz

Discrete random variable, probability and cumulative
distribution functions

Experiment: Throw a pair of fair dice

X is a random variable defined as the sum of two die faces

What does the probability distribution look like?

What does the CDF look like?
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Continuous Random variables

The variable (outcome) can take any real value in an interval on
the real number line. This is the sample space

Probability density function (probability density function)
f(X) is described graphically by a curve

The area under the probability density function
corresponds to probability:

∫ b
a f(X)dX = Pr(a ≤ X ≤ b)∫

Sample space f(X)dX = 1 i.e., Pr(sample space) = 1

If sample space is the set of real numbers,
∫∞
−∞ f(X)dX = 1
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Cumulative distribution functions

Continuous random variables and Cumulative distribution
functions

The cumulative distribution function F ()

F (x) = Pr(X ≤ x) =
∫ x
−∞ f(V )dV

F (b)− F (a) = Pr(a ≤ X ≤ b) =
∫ b
a f(X)dX

Probability density f is the derivative of F
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Uniform distribution

Continuous uniform (rectangular) distribution. U [0, 1]
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Normal distribution

X ∼ N(µ, σ2)

f(x) =
1

σ
√

2π
e

−(x−µ)2

2σ2

µ=mean, σ= st. dev., π = 3.14..., e = 2.71...

The normal distribution is, in fact, a family of distributions
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Normal distribution PDF

Normal distribution PDF. µ = 1, σ = 2)
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Standard Normal distribution

Standard Normal, N(0,1): CDF (e.g., F (1) = 0.84) and
Quantiles (e.g., F−1(.6) = 0.25)

Why is the Normal Distribution so common? Central Limit
Theorem. Example
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Moments of a Random variable

Expectation

Characterizing the random variable in the population (not
sample)

The first moment of a discrete random variable X: mean /
expected value / expectation

E(X) = µ = x1p1 + ...+ xnpn =

n∑
i=1

xipi

pi = probability that X = xi in the population
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Moments of a Random variable (cont’d)

Expectation of functions of a Random variable, E(f(X))

Is a function of a random variable a random variable?

Expected value of functions of X

E(X2) = x21p1 + ...+ x2npn =

n∑
i=1

x2i pi

E[g(X)] = g(x1)p1 + ...+ g(xn)pn =

n∑
i=1

g(xi)pi
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Second Central Moment

The Second Central Moment of a Random variable

Central moments: moments about the mean

Second moment: Variance

For a discrete random variable:

V ar(X) = σ2 = E
(
(X − µ)2

)
V ar(X) = (x1 − µ)2p1 + · · ·+ (xn − µ)2pn =

n∑
i=1

(xi − µ)2pi

Standard deviation =
√

Variance = σ
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3rd and 4th Central Moments

3rd and 4th Central Moments of a Random variable

Skewness =
E[(X − µ)3]

σ3

Kurtosis =
E[(X − µ)4]

σ4
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Linear transformed Random variable

Quiz:

Xnew = aX + b

Mean of Xnew = ?

Median of Xnew = ?

Variance of Xnew= ?
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Adding independent random variables

Quiz:

Mean and Variance of a sum of independent random
variables

Many useful statistics are linear combinations of data, i.e.,
of random variables

If X and Y are independent:

E(X + Y ) = ?
V ar(X + Y ) = ?
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Moments of a Random variable

Quiz:

Experiment: Throw a pair of fair dice, independently.

Outcome = X = sum of the faces

Mean?

Variance?

Skewness?
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Joint distribution of Two Discrete Random variables

Example: X = the sum of two independent die faces
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Joint distribution: Bivariate Normal distribution

Independent r.v.s
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Joint distribution of two continuous random variables

Danny Quah, 2000
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Joint distributions and Covariance

The covariance between random variables X and Y :

Cov(X,Y ) = E[(X − µX)(Y − µY )] = µXY

Measure of linear association between X and Y ;

Units: Units of X× Units of Y

Positive linear relation between X and Y : Cov(X,Y ) > 0
Negative: (Cov(X,Y ) < 0)
If X and Y independently distributed: Cov(X,Y ) = 0
But not vice versa!! (Why?)

The Covariance of a r.v. with itself is its variance:

Cov(X,X) = E[(X − µX)(X − µX)] = E[(X − µX)2] = σ2X
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Covariance of functions of r.v.s

Covariance between linear functions of r.v.s:

V ar(X + Y ) = V ar(X) + V ar(Y ) + 2Cov(X,Y )

Cov(X,Y ) :

σXY = E ((X − µX)(Y − µY ))

= E (XY −XµY − Y µX + µXµY )

= E(XY )− µXµY − µXµY + µXµY

= E(XY )− µXµY

Likewise, can show: Cov(a+ bX + cV, Y ) = bσXY + cσV Y
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Correlation coefficient

Correlation coefficient: standardized Covariance

Corr(X,Y ) =
Cov(X,Y )√
V ar(X)V ar(Y )

=
σXY

σXσY
= ρXY

−1 ≤ ρXY ≤ 1

Perfect positive linear dependence: ρXY = 1

Y = β0 + β1X for some constants β0 and β1 > 0

Perfect negative linear dependence: ρXY = −1

Y = β0 + β1X for some constants β0 and β1 < 0

No linear dependence: ρXY = 0
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The correlation coefficient measures linear association
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Joint distributions, review

Example

X = −100 X = 100
Y = −50 0.00099 0.01998
Y = 50 0.00001 0.97902
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Marginal distributions

Example

X = −100 X = 100 Marginal distribution of Y
Y=-50 0.00099 0.01998 0.00099+0.01998=0.02097
Y=50 0.00001 0.97902 0.00001+0.97902=0.97903

0.001 0.999

Marginal distribution of X:
P (X = x) =

∑
j P (X = x, Y = yj)

Marginal distribution of Y :
P (Y = y) =

∑
i P (X = xi, Y = y)
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Conditional Distribution, Mean and Variance

Example

Conditional distribution of Y , conditional on X = −100

X = −100
Y=-50 P (Y = −50|X = −100) = 0.00099/0.001 = 0.99
Y=50 P (Y = 50|X = −100) = 0.00001/0.001 = 0.01

Conditional Mean of Y , conditional on X = −100:

−50 ∗ 0.99 + 50 ∗ 0.01 = -49

Conditional Variance of Y , conditional on X = −100:

(−50− (−49))2 ∗ 0.99 + (50− (−49))2 ∗ 0.01 = 99
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Conditional Distribution, Conditional Mean

Conditional distribution of Y given X:

Distribution of Y , given the value of X: P (Y = y|X = x)

P (Y = y|X = x) =
P (Y = y,X = x)

P (X = x)

P (A|B) =
P (A And B)

P (B)

Conditional Mean=Mean of Conditional distribution

Basic concept in regression

E(Y |X = x) =
∑
j

yjP (Y = yj |X = x)
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Conditional Variance

Conditional Variance=Variance of Conditional distribution

σ2Y (x) = V ariance(Y |X = x)

denote E(Y |X = x) = µY (x)

σ2Y (x) =
∑
j

(yj − µY (x))2 × P (Y = yj |X = x)
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Independence

If X and Y are independent:

knowledge of X provides no information on Y , and vice
versa

P (Y = y|X = x) = P (Y = y);P (A|B) = P (A)

P (X = x|Y = y) = P (X = x);P (B|A) = P (B)

P (X = x, Y = y) = P (X = x)P (Y = y);
P (A&B) = P (A)P (B)
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