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Joint Distributions, review

Bivariate Normal distribution, independent r.v.s

Session 3: Normality, Estimators, Hypotheses http://thiloklein.de 2/ 70

http://www.thiloklein.de


Review & SND Estimators Sampling Estimation Hypotheses Power

Joint distribution of two continuous random variables

Danny Quah, 2000
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Using the Standard Normal Distribution (SND)

SND Table area

Session 3: Normality, Estimators, Hypotheses http://thiloklein.de 4/ 70

http://www.thiloklein.de


Review & SND Estimators Sampling Estimation Hypotheses Power

Using the Standard Normal distribution

SND Table
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Proportion smaller than 0.83?

What proportion of observations are smaller than 0.83?
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Proportion greater than −2.15?

What proportion of observations are greater than −2.15?
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Inverse of SND

Inverse of SND: F−1(.3) =?

Z Value that cumulates 3% of probability
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Example

Inventories in a dealership

An inventory or resource management problem: A dealership’s
stock of new autos is replenished to 20 every month.

Sales are lost due to stockouts

Known that demand (X) within the month is normally
distributed with a mean of 15 and a standard deviation of 6

What is the probability of a stockout?
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Using the Standard Normal distribution

Solving for the stockout probability

P (X > 20)given X ∼ N(15, 62)
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Using the Standard Normal distribution (cont’d)

Solving for the stockout probability (cont’d)

Convert x = 20 to its standard normal value

z = (x− µ)/σ

= (20− 15)/6

= 0.83

Find area under SND to the right of z = 0.83

Pr(z > 0.83) = 1− F (0.83)

= 1− 0.797

= 0.20

Probability of stockout = Pr(X > 20) = 0.2
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Using the Standard Normal distribution (cont’d)

Solving for the stockout probability (cont’d)

If the probability of stockout is to be no more than 5%, what
should the reorder point be?
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Using the Standard Normal distribution (cont’d)

Solving for the reorder point
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Using the Standard Normal distribution (cont’d)

Solving for the reorder point (cont’d)

We know from the SND that z0.05 = 1.645

We are interested in the corresponding x value

x = µ+ z0.05σ

= 15 + 1.645× 6

= 24.9

Reorder point of 25 automobiles will keep probability of
stockout at slightly less than 0.05

By increasing reorder point from 20 to 25 the probability of
stockout falls from .2 to 0.05
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Estimators

From the dist. of r.v. X, to the dist. of estimators

Begin with a r.v. X and its probability distribution, f(X, θ) or
fX(x; θ1, · · · , θL), characteristic of the population

Parameter (θ) is the fixed, but unknown value (or set of values)
that describes the popln. distribution, e.g.: true mean and
variance of a price distribution

The number of parameters depends on the distribution. The
Normal has two

Note: Distributions have generating mechanisms

The Central Limit Theorem is an example of a generating
process: a stochastic process that underlies the r.v.
(average, in this case)

A random vector variable (X1, X2, · · · , Xn) is characterized by
its joint distribution: fX1,··· ,Xn(x1, · · · , xn; θ1, · · · , θK), e.g., a
multivariate normal distribution
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Estimators

Definitions, contd.

A statistic is any given function of observable values, which
can be evaluated from a sample, e.g., m = max(X1, ..., Xn)

As a function of random variables, a statistic is itself a
random variable

An estimator (θ̂) is the sample counterpart of a(n
unknown) population parameter (θ). It is a statistic, i.e., it
can be calculated from observed values

An estimate is the numerical value obtained when the
estimator is applied to a specific sample

Sampling distribution is the prob. distribution over values
taken by estimates across all possible samples of the same
size from the population
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Estimators

Unbiasedness

An estimator θ̂, is unbiased if E(θ̂) = µθ̂ = θ

If not, the estimator is biased

bias(θ̂) = E(θ̂)− θ

Q: Is the sample mean an unbiased estimator of the
population mean?
How can we find out whether E[X̄] = θ?
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Estimators

Efficiency

Let θ̂1 and θ̂2 be two unbiased estimators of θ

Estimator θ̂1 is the more efficient of the two if
V ar(θ̂1) < V ar(θ̂2)

Among unbiased estimators, the one with the smallest
variance is called the best unbiased estimator
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Estimators

Unbiasedness and Efficiency
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Estimators

Conflict between unbiasedness and efficiency
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Estimators

Mean square error: resolving trade-off between bias and inefficiency

Think in terms of a loss function, which reflects the cost of
making errors, positive or negative, of different sizes

A widely used loss function : Mean square error (MSE) of the
estimator = E( square of deviation of estimator from true )

MSE(θ̂) = E[(θ̂ − θ)2], which is = σθ̂
2 + (µθ̂ − θ)

2
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Asymptotic properties of Estimators

Large sample (asymptotic) properties of estimators

The finite sample distribution of an estimator may often
not be known

Even so, statisticians are often able to figure out the
sampling distribution of estimators when n is large enough

e.g., Central limit theorem

One relevant concept here is Consistency of the estimator
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Asymptotic properties of Estimators

Effect of increasing the sample size on the distribution of X̄

Assume E(X) = µX = 100 and σX = σX
2 = 50

We do not know these population parameters

We use the sample mean to estimate the population mean
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Asymptotic properties of Estimators

Increasing sample size and the distribution of X̄ (cont’d)

How does the shape of the distribution change as the
sample size is increased?

The distribution is more concentrated about the pop. mean
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Asymptotic properties of Estimators

Increasing sample size and the distribution of X̄ (cont’d)

The distribution collapses to a spike at the true value

σ2
X → 0

The sample mean is a consistent estimator of the population
mean.
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Asymptotic properties of Estimators

Large sample (Asymptotic) properties of any estimator θ̂ is to
do with:

How the sampling distribution of θ̂n, where n is the size of
the sample, changes when n increases towards infinity?

θ̂ is a consistent estimator for θ if:

plim(θ̂) = θ

i.e.,
Prob(θ − ε ≤ θ̂n ≤ θ + ε) = 1 as n→∞
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Asymptotic properties of Estimators

Example: Estimator biased in finite samples but consistent

θ̂ is an estimator of a population characteristic θ
From the probability distribution of θ̂, θ̂ is biased upwards
We will see soon that the sample variance (if measured as∑

(Xi − X̄)2/n is biased downwards

Session 3: Normality, Estimators, Hypotheses http://thiloklein.de 27/ 70

http://www.thiloklein.de


Review & SND Estimators Sampling Estimation Hypotheses Power

Asymptotic properties of Estimators

Example: biased in finite samples but consistent (cont’d)

The distribution collapses to a spike with larger samples
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Asymptotic properties of Estimators

Example: biased in finite samples but consistent (cont’d)

Example?
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Sampling and Sampling distribution

Distribution of a sample, Y1, ..., Yn, under random sampling

Under simple random sampling:

We choose an individual (firm, household, stock, entity ...)
at random from the population
Prior to sample selection, the value of Y is random because
the individual is to be selected randomly
Once the individual is selected, the value of Y is observed,
and Y is not random
The data set is (Y1, Y2, .., Yn), Yi = is the value of the r.v.
pertaining to the ith entity sampled
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Sampling and Sampling distribution

Distribution of Y1, ..., Yn under simple random sampling

Because individuals i and j are selected at random, the
value of Yi has no information on the value of Yj
(independent events)

Yi and Yj are independently distributed

Because Yi and Yj come from the same distribution

Yi and Yj are identically distributed

So under simple random sampling, Yi and Yj are
independently and identically distributed (i.i.d.)

More generally, under simple random sampling, {Yi},
i = 1, ..., n are i.i.d.

Probability theory makes statistical inference about
moments of population distributions simple when samples
drawn from the population are random
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Sampling and Sampling distribution

The sampling distribution of Ȳ

Ȳ is a random variable, and its properties are given by the
sampling distribution of Ȳ

The individuals in the sample are drawn at random; so the
vector (Y1, ..., Yn) is random
So functions of (Y1, ..., Yn) , such as Ȳ , are random.
Different samples, different Ȳ values
The distribution of Ȳ over each of the different possible
samples of size n is the sampling distribution of Ȳ
The mean and variance of Ȳ are the mean and variance of
its sampling distribution: E(Ȳ ) and V ar(Ȳ )
The concept of sampling distribution underpins statistical
analysis
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Sampling and Sampling distribution

Things we want to know about the sampling distribution

What is the mean of Ȳ ?

If E(Ȳ ) = µY , then Ȳ is an unbiased estimator of µY

What is the variance of Ȳ ?

If the variance of Ȳ is lower than that of another estimators
of µ, then Ȳ estimator is the more efficient
How does V ar(Ȳ ) depend on n?
Does Ȳ tend to fall closer to µ as n grows large?
if so, Ȳ is a consistent estimator of µ

Can we pin down the probability distribution (i.e., the
sampling distribution) of Ȳ ?
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Sampling and Sampling distribution

Mean of the sampling distribution of Ȳ

General case - i.e., for Yi, i.i.d. from any distribution:

E(Ȳ ) = E(
1

n

n∑
i=1

Yi) =
1

n

n∑
i=1

E(Yi) =
1

n

n∑
i=1

µY = µY

Ȳ is an unbiased estimator of µY (E(Ȳ ) = µY )
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Sampling and Sampling distribution

Variance of the sampling distribution of Ȳ

V ar(Ȳ ) = E[(Ȳ − µY )2]

= E

(( 1

n

n∑
i=1

Yi

)
− µY

)2


= E

( 1

n

n∑
i=1

(Yi − µY )

)2


= E

[ 1

n

n∑
i=1

(Yi − µY )

]
×

 1

n

n∑
j=1

(Yj − µY )
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Sampling and Sampling distribution

Variance of the sampling distribution of Ȳ (2)

V ar(Ȳ ) = E

[ 1

n

n∑
i=1

(Yi − µY )

]
×

 1

n

n∑
j=1

(Yj − µY )


=

1

n2

n∑
i=1

n∑
j=1

E [(Yi − µY )(Yj − µY )]

=
1

n2

n∑
i=1

n∑
j=1

Cov(Yi, Yj) =
1

n2

n∑
i=1

σ2
Y

=
σ2
Y

n

Note: Cov(Yi, Yj) = 0 for i 6= j; Cov(Yi, Yj) = V ar(Yi) for i = j
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Sampling and Sampling distribution

Variance of the sampling distribution of Ȳ - simpler

V ar(Ȳ ) = V ar

[
1

n

n∑
i=1

(Yi)

]

=
1

n2
V ar

[
n∑
i=1

(Yi)

]

Recall: V (Y1 + Y2) = V (Y1) + V (Y2) + 2Cov(Y1, Y2)
But Cov(Yi, Yj) = 0 for i 6= j (Why?)
So:

V ar(Ȳ ) =
1

n2
nV (Yi)

=
σ(Y )2

n
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Sampling and Sampling distribution

Mean and variance of sampling distribution of Ȳ

E(Ȳ ) = µY

V ar(Ȳ ) =
σY

2

n

Ȳ is an unbiased estimator of µ

V ar(Ȳ ) is inversely proportional to n

the spread (st. dev.) of the sampling distribution is
proportional to 1√

n

Larger samples, less uncertainty: Consistent
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Sampling and Sampling distribution

The sampling distribution of Ȳ when n is large

For small sample sizes, the distribution of Ȳ is complicated,
but if n is large, the sampling distribution is simple!

Law of Large Numbers

If (Y1, ..., Yn) are i.i.d. and σY
2 <∞, then Ȳ is a consistent

estimator of µY : plim(Ȳ ) = µY
Ȳ converges in probability to µY
i.e., as n→∞, V ar(Ȳ ) = σY

2

n → 0
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Sampling and Sampling distribution

The Central Limit Theorem (CLT) statement

If (Y1, ..., Yn) are i.i.d. and 0 < σY
2 <∞, then when n is

large, the distribution of Ȳ is approximated well by a
normal distribution

Ȳ ∼ N(µY ,
σY

2

n ) approximately

Standardized Ȳ = Ȳ−µY
σY√
n

∼ N(0, 1) approximately

The larger is n, the better the approximation
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Point and Interval estimation

Point estimation

A point estimator estimates the value of an unknown
parameter in a population using a single value

But we deal with random variables and therefore cannot
have certainty

Way forward?
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Point and Interval estimation

Point estimation - illustration
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Point and Interval estimation

Interval estimation

An interval estimator estimates the unknown parameter
using a (small) interval, ...

...and the associated (high) probability that the population
parameter is contained in that interval

This takes account of sampling. The sample (to which the
estimator is applied to obtain an estimate) is random

Q: What is the the smallest interval with a sufficiently high
probability - the most informative interval?
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Point and Interval estimation

Interval estimation - illustration
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Point and Interval estimation

Interval estimation - illustration 2
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Point and Interval estimation

Q: Interval estimation

Question: Why not define an interval we can be certain of
containing the true value?

The only certain interval is [−∞,+∞]!
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Point and Interval estimation

Confidence interval for a parameter θ ...

... is an interval on the line (the space in which θ can lie)

that, given the sampling distribution of the estimator θ̂,
contains θ with a specified (sufficiently high) probability

e.g., What is the interval [a, b] that will contain θ with
probability of, say, 0.95 (i.e., a ≤ θ ≤ b with probability
0.95)?
Find a and b, and you have an interval estimate: [a, b] is the
95% confidence interval for θ
The price of defining a (small) interval [a, b], and not
(−∞,∞) is the (5%) probability that you necessarily allow
that your interval estimate may be wrong (does not contain
θ)
This probability split is yours to make: 99%− 1% or
90%− 10%, any other, depending on the probability of being
wrong that you can live with
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Point and Interval estimation

Confidence interval and Critical region for a test of hypothesis

So, to test your (well reasoned) hypothesis about the
unknown θ, you need to fix a and b;

the region in the parameter space (the real line) outside
[a, b] is the critical region for your test

What you are really asking is: Is the difference between
your hypothesized θ and the estimated θ̂ attributable to the
randomness of sampling?
Or is the difference between θ and θ̂ too large for it to be
merely due to sampling variation?
If so, what should you do with your pet theory?
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Point and Interval estimation

Confidence interval for µ

Assume X ∼ N(µ, σ) and that σ is known (or that n is
large)

X̄ ∼ N(µ, σ√
n

) So the test statistic X̄−µ
σ√
n

= Z ∼ N(0, 1)

What probability (α) that your best interval estimate is
wrong can you live with? (in testing hypotheses, α will be
referred to as the size of the test). Let us fix α = 5%

What are that values a and b, (with reference to
X̄−µ
σ√
n

= Z ∼ N(0, 1)) such that Pr(a ≤ µ ≤ b) = 1− α?
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Point and Interval estimation

95% Confidence interval for µ (2)

X̄−µ
σ√
n

= Z ∼ N(0, 1); α = 5%;

find: Pr(−zα/2 ≤ X̄−µ
σ√
n
≤ zα/2) = 0.95
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Point and Interval estimation

95% Confidence interval for µ (3)

Pr(−zα/2
σ√
n

+ X̄ ≤ µ ≤ zα/2
σ√
n

+ X̄) = 0.95

From the standard Normal Table:
z.025 = −1.96 z.975 = 1.96

Pr(−1.96 σ√
n

+ X̄ ≤ µ ≤ 1.96 σ√
n

+ X̄) = 0.95
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Tests of hypothesis

Old example to illustrate types of errors in testing hypotheses

A rare disease infects 1 person in a 1000

There is good but imperfect test

99% of the time, the test identifies the disease

2% of uninfected patients also return a positive test result

Null Hypothesis H0: Patient has the disease

Alternate Hypothesis Ha: Patient does not

Q: Why not choose as H0: Patient does not has the disease?
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Tests of hypothesis

Test of hypotheses example: Joint distribution

A: patient
has disease

A: patient
does not
have disease

B: patient tests
positive

0.00099 0.01998 P (B)
= 0.02097

B: patient does
not test positive

0.00001 0.97902 P (B)
= 0.97903

P (A)
= 0.001

P (A)
= 0.999

1

H0: Patient has the disease Ha: Patient does not
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Tests of hypothesis

Test of hypotheses example: correct decisions

A: Patient has dis-
ease

A: Patient does
not have disease

B: Tests pos-
itive

If you do not reject
H0: Correct de-
cision

B: patient
does not test
positive

If you reject H0:
Correct decision

H0: Patient has the disease Ha: Patient does not
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Tests of hypothesis

Test of hypotheses example: Type I error

A: Patient has dis-
ease

A: Patient does
not have disease

B: Tests pos-
itive

Correct decision

B: Does not
test positive

If you rejected (the
true) H0, Type I
error

Correct decision

H0: Patient has the disease Ha: Patient does not
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Tests of hypothesis

Test of hypotheses example: Type II error

A: Patient has dis-
ease

A: Patient does
not have disease

B: Tests pos-
itive

Correct decision If you did not re-
ject (the false) H0,
Type II error

B: Does not
test positive

Type I error Correct decision

H0: Patient has the disease Ha: Patient does not
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Tests of hypothesis

H0: Patient has the disease Ha: Patient does not

Patient has disease Patient does not

B: Tests pos-
itive

Correct decision
Prob(Type II error)
=0.01998/0.999
= .02 = 2%

B: Does not
test positive Prob(Type I error)

=0.00001/0.001
= 0.01 = 1%

Correct decision

P (Error type I) = P (Reject H0|H0 true) = α = Size of test

P (Error type II) = P (Not Reject H0|H0 false) = β

1− P (Error type II) = 1− β = Power of test

Session 3: Normality, Estimators, Hypotheses http://thiloklein.de 57/ 70

http://www.thiloklein.de


Review & SND Estimators Sampling Estimation Hypotheses Power

Tests of hypothesis

Hypothesis tests - two points

First:

Probability of Type I error, is the size of the test, α and is
1% in this example
Can it be changed? How?

Second:

We can never have enough evidence to accept a null
hypothesis
We suspend judgement if the evidence is against the
alternative
We can only reject or not reject the null

Session 3: Normality, Estimators, Hypotheses http://thiloklein.de 58/ 70

http://www.thiloklein.de


Review & SND Estimators Sampling Estimation Hypotheses Power

Test of hypothesis: an example

A hypothesis about the impact of discounts on sales of
automobiles

Increased sales of Citreons after discount

µ = 1200 hypothesized increase in UK sales of Citreons
with discount

σ = 300 assumed known population st. dev. of increase in
sales with discount

X random variable - increase in sales of Citreons after
discount

A sample of 100 discount episodes observed: X̄ = 1265

Frame a test:
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Test of hypothesis: an example

Possible hypothesis tests for the mean: One or two tailed

H0 : E(X) = µ Vs. Ha : E(X) > µ (1-sided, >)

H0 : E(X) = µ Vs. Ha : E(X) < µ (1-sided, <)

H0 : E(X) = µ Vs. Ha : E(X) 6= µ (2-sided)
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Test of hypothesis: an example

Q: Sales of automobiles

H0 : µ = 1200, Ha : µ > 1200

Find a and b, using sample estimate X̄, such that
Pr(a ≤ µ ≤ b) = 1− α
i.e., a and b, such that Under H0: Pr(test statistic does not
lie in the critical region)=1− α

Pr

(
X̄−µ
σ√
n
≤ zα

)
=1-α i.e., Pr

(
X̄−1200

300√
100

≤ 1.645

)
=0.95
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Test of hypothesis: an example

Q: Sales of automobiles

The critical region is: Pr

(
X̄−1200

300√
100

> 1.645

)
Note that this is a one-tail test, so all 5% is on the right tail

In this case: (1265− 1200)/30 = 2.17 > 1.645

So we reject the null hypothesis
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Test of hypothesis: an example

Two tailed test: Sales of automobiles

H0 : µ = 1200, Ha : µ 6= 1200

From the SND table, zα/2 = z.025 = 1.96
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Test of hypothesis: an example

Two tailed test: Sales of automobiles (2)

Suppose our sample estimate is different: X̄ = 1245

Session 3: Normality, Estimators, Hypotheses http://thiloklein.de 64/ 70

http://www.thiloklein.de


Review & SND Estimators Sampling Estimation Hypotheses Power

Test of hypothesis: an example

p-value

The significance level of a test is the pre-specified probability of
incorrectly rejecting the null, when the null is true
e.g., if the pre-specified significance level is 5% (size of test):

you reject the null hypothesis in a two-tailed test if
|standardised test statistic| ≥ 1.96

p-value = probability of drawing a statistic (e.g. Ȳ ) at least as
adverse to the null as the value actually computed with your
data, assuming that the null hypothesis is true

If significance level is 5%, you reject the null hypothesis if
p ≤ 0.05
The p-value is sometimes called the marginal significance
level
It is better to report the p-value, than simply whether a
test rejects or not
p-value contains more information than “reject/not reject”
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Test of hypothesis: an example

Different Confidence Intervals

1-α Confidence interval

0.5 (X̄ − 0.67 σ√
n

), X̄ + 0.67 σ√
n

)

0.9 (X̄ − 1.64 σ√
n

), X̄ + 1.64 σ√
n

)

0.95 (X̄ − 1.96 σ√
n

), X̄ + 1.96 σ√
n

)

0.99 (X̄ − 2.57 σ√
n

), X̄ + 2.57 σ√
n

)

0.999 (X̄ − 3.27 σ√
n

), X̄ + 3.27 σ√
n

)

The more the degree of certainty (lower Pr(Type I error))
needed, the larger the interval
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Tests of hypothesis: Power of the test

Type II errors: simulation

You commit a type II error if you do not reject a false Null

Error type II occurs if you do not reject a false Null

P [Reject H0|H0 false] = 1− P [Error type II] = Power of
the test

Experiment to illustrate:

Generate data through i.i.d. draws from N(µ, 1) (simple
random sampling)
Keep σ2 = 1; but different values of µ in the interval
[−2, 2]
Always test the null: H0 : µ = 0 against alternative:
Ha : µ 6= 0
Aim: determine the power of the test, i.e., the prob of not
making type II errors, prob. of not rejecting the Null when
it is false
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Tests of hypothesis: Power of the test

Probability of not making type II errors: simulation (2)

Sample mean (Ȳ ) is the estimator of µ

3 sample sizes: 10, 100 and 1000, used for estimating (Ȳ )

Recall: Samples are from N(µ, 1) where µ is in [−2, 2]

Critical region:

Size of the test fixed at 5%
We reject the null (µ = 0) if |Ȳ | > c, where c is determined
by P [−c ≤ Ȳ ≤ c] = 0.95, for µ = 0
As σ = 1, and the test is for µ = 0, we have c = 1.96/

√
n

Note: in most cases in this experiment, the null is false

10000 runs of each test. The proportion of times when H0

is rejected is reported
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Tests of hypothesis: Power of the test

Pr(Reject H0) reported in percentages

DGP: Yi ∼ N(µ, 1) for µ ∈ [−2, 2], including µ = 0
H0 : µ = 0;Ha : µ 6= 0
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Tests of hypothesis: Power of the test

Probability of not making type II errors: simulation (3)

The power of the test increases with the sample size

The power of the test increases the further away is the true
µ from the Null hypothesis µ

For n = 1000 the null is rejected nearly always if DGP has
µ < −0.1 or µ > 0.1

Also: The smaller the probability of a Type 1 error, the
greater the probability of Type II error (Show)

Lesson: Choose the level of significance with care, and use
as large a sample as possible
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