Non-Linearity

Dummies

Slope Dummies

MPO1: Quantitative Research Methods Session 6: F-tests for goodness of fit, Non-linearity and Model Transformations, Dummy variables, Interactions

Thilo Klein

University of Cambridge Judge Business School

Session 6: Non-linearity, Dummy variables

http://thiloklein.de

1/ 37

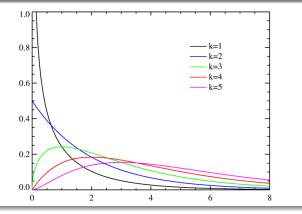
Non-Linearity

Slope Dummies

χ^2 and F Distributions

Chi-squared Distribution χ_K^2

- If $Y_i \sim N(0, 1)$, then
- $\sum_{i=1}^{K} Y_i^2 \sim \chi_K^2$ distribution, with K degrees of freedom


$$pdf: f(y,K) = \begin{cases} \frac{1}{2^{K/2}\Gamma(K/2)} y^{(K/2)-1} e^{-y/2} & \text{for } y > 0\\ 0 & \text{for } y \le 0 \end{cases}$$

CAMBRIDGE Judge Business School **Review** ○●○○○○ Non-Linearity

Slope Dummies

χ^2 and F Distributions

Chi-squared Distribution χ_K^2

Session 6: Non-linearity, Dummy variables

Non-Linearity

Slope Dummies

χ^2 and F Distributions

F Distribution

• If $U_1 \sim \chi_{df_1}^2$, $U_2 \sim \chi_{df_2}^2$ and U_1 , U_2 are independent, then

$$X = \frac{U_1/df_1}{U_2/df_2} \sim F_{df_1, df_2}$$

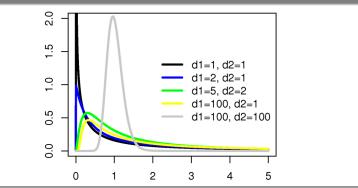
• pdf of an F distributed random variable, X with df_1 and df_2 degrees of freedom is:

$$f(x) = \frac{\sqrt{\frac{(df_1 x)^{df_1} df_2^{df_2}}{(df_1 x + df_2)^{df_1 + df_2}}}}{x \operatorname{B}\left(\frac{df_1}{2}, \frac{df_2}{2}\right)}$$

B(·, ·) is the Beta function
E(X) = df₂/df₂ for df₂ > 0

Session 6: Non-linearity, Dummy variables

http://thiloklein.de


4/37

Non-Linearity

Slope Dummies

χ^2 and F Distributions

F-distribution

Non-Linearity

Slope Dummies

${\cal F}$ Tests of fit

F-test of R^2

$$Y_i = \beta_0 + \beta_1 X_1 + \dots + \beta_k X_k + u_i$$

 $H_0: \beta_1 = \cdots = \beta_K = 0$ $H_a:$ at least one $\beta \neq 0$

$$\frac{ESS/(K-1)}{RSS/(n-K)} = \frac{\frac{ESS}{TSS}/(K-1)}{\frac{RSS}{TSS}/(n-K)} \\ = \frac{R^2/(K-1)}{(1-R^2)/(n-K)} \sim F(K-1, n-K)$$

Application

CAMBRIDGE Judge Business School

Session 6: Non-linearity, Dummy variables

Non-Linearity

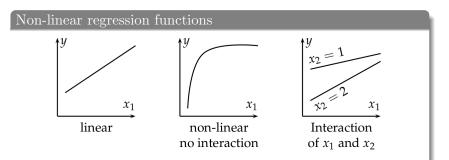
Slope Dummies

${\cal F}$ Tests of fit

Another application: incremental contribution of a set of variables

•
$$Y = \beta_1 + \beta_2 X_2 + u$$
: RSS_1
• $Y = \beta_1 + \beta_2 X_2 + +\beta_3 X_3 + \beta_4 X_4 + u$: RSS_2
• $H_0: \beta_3 = \beta_4 = 0; \quad H_a: \beta_3 \neq 0 \text{ or } \beta_4 \neq 0$
or both β_3 and $\beta_4 \neq 0$

$$\frac{\text{Increase in ESS}}{\text{cost in d.f.}} / \frac{\text{remaining RSS}}{\text{d.f. remaining}} \sim F(\text{cost, d.f. remaining})$$


$$\frac{(RSS_1 - RSS_2)/(df_1 - df_2)}{RSS_2/df_2} \sim F(df_1, df_2)$$

- Note: $F_{1,n}$ is the squared Student t_n distribution
- A series of independent t tests is not the same as an F test: why?

Non-Linearity

Slope Dummies

Plan for today

If the dependence between Y and X is non-linear, the marginal effect of X is not constant.

Approach:

- non-linear functions of a single independent variable
 - Polynomials in X; Logarithmic transformation
- Interactions

8/37

Model Building 1: Variable transformations

Why variable transformations?

- Transformations: suitable mathematical functions applied to variables
- Sometimes sensible to transform the dependent and/or explanatory variables through one-to-one functions, and estimate the model with these transformed variables. Why?
 - May make more sense from a theoretical or data generating point of view.
 - Mulitple linear regression more reliable when predictors have reasonably symmetric distributions and are not too highly skewed in distribution
 - Many variables of interest are positively skewed: a log transformation works well to transform such variables

Dummies

Slope Dummies

Model Building 1: Variable transformations

Linearity and Nonlinearity

• Linear in variables and parameters:

•
$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + u$$

• Linear in parameters, nonlinear in variables:

•
$$Y = \beta_0 + \beta_1 X_1^2 + \beta_2 \sqrt{X_2} + \beta_3 log X_3 + u$$

•
$$Z_1 = X_1^2, \ Z_2 = \sqrt{X_2}, \ Z_3 = log X_3$$

•
$$Y = \beta_0 + \beta_1 Z_1 + \beta_2 Z_2 + \beta_3 Z_3 + u$$

- *Cosmetic* transformations sufficient to make the model linear in variables
- Nonlinear in parameters: Cannot estimate with OLS but other methods exist

•
$$Y = \beta_0 + \beta_1 Z_1 + \beta_2 Z_2 + (\beta_1 (1 - \beta_2)) Z_3 + u$$

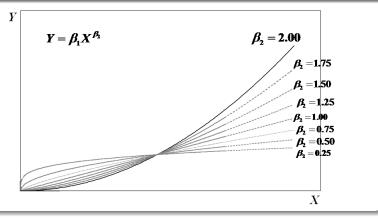
Slope Dummies

Model Building 1: Variable transformations

Double-logarithmic models and Elasticity

- Sometimes a stronger linear relationship between logY and logX, than between Y and X (Why?)
- Examples: demand functions: 1% change in price leads to (constant) x% change in quantity demanded
- Proportionate change in Y linearly related to proportionate change in X
- Double-logarithmic model: constant elasticity of Y with respect to X

• Elasticity
$$= \frac{dY/Y}{dX/X} = \frac{dY/dX}{Y/X}$$


Non-Linearity

Dummies

Slope Dummies

Model Building 1: Variable transformations

Double-logarithmic models and Elasticity: figure

Session 6: Non-linearity, Dummy variables

Non-Linearity

Slope Dummies

Model Building 1: Variable transformations

Double-logarithmic models and Elasticity (2)

•
$$Y = \beta_0 X^{\beta_1}$$

•
$$\frac{dY}{dX} = \beta_0 \beta_1 X^{\beta_1 - 1}$$

•
$$\frac{Y}{X} = \frac{\beta_0 X^{\beta_1}}{X} = \beta_0 X^{\beta_1 - 1}$$

• Elasticity =
$$\frac{dY/dX}{Y/X} = \frac{\beta_0 \beta_1 X^{\beta_1 - 1}}{\beta_0 X^{\beta_1 - 1}} = \beta_1$$

• Simple to fit a constant elasticity model to data: linearize the model by taking the logarithms of both sides

$$logY = log \left(\beta_0 X^{\beta_1}\right) = log\beta_0 + log \left(X^{\beta_1}\right)$$
$$= log\beta_0 + \beta_1 logX = b_0 + b_1 logX$$

- The constant b_0 is the estimate of $log\beta_0$
- To obtain estimate of β_1 , exponentiate the estimated regression coefficient b_1

Non-Linearity

Dummies

Slope Dummies

Model Building 1: Variable transformations

Semi-logarithmic models

- Another kind of a multiplicative relationship:
 - e.g., between additional years of experience (or education) and earnings
- The semi-logarithmic specification allows the increment to increase with level of education

•
$$Y = \beta_0 e^{\beta_1 X}$$

• $\frac{dY}{dX} = \beta_0 \beta_1 e^{\beta_1 X} = \beta_1 Y$

•
$$\frac{dI/I}{dX} = \beta_1$$

Dummies

Slope Dummies

Model Building 1: Variable transformations

Polynomial models

- $Y = \beta_1 + \beta_2 X + \beta_3 X^2 + \beta_4 X^3 + u$
- Difficult to justify powers greater than 3, unless strong theoretical reasons to fit higher power
- Center X: deviations of X from its mean (or median) can reduce collinearity between X and higher powers
- A polynomial function may be used when
 - the true response function is polynomial
 - the true response function is unknown but a polynomial is a good approximation of its shape
- General principle: hierarchy
 - Keep X in the model, if X^2 is significant
 - Keep X and X^2 in the model, if X^3 is significant

Slope Dummies

Model Building 1: Variable transformations

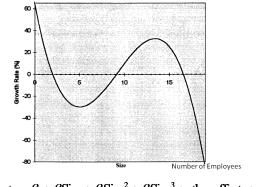
Polynomial regression model: why is this example interesting?

Sample: 75 "services" firms from the North of England, observed in 2002-3

Dependent variable: Annual growth rate of the firm

Expl Vars	Estimates	
CONSTANT EDUC TIMTR SIZE SIZESQ SIZECUB PPROF TURB	0.66*** -0.28*** 0.46E-4*** -0.43*** 0.06*** -0.002*** -0.37*** 0.00***	: no A levels = 0; A levels = 1 : period respondent in business (years). : Opening employment full time equivalents : SIZE squared : SIZE cubed : % of empl. accounted for by professionals : sum of birth and death rates in the industry
EDUCxPPROF	0.33***	: interaction term

R² = 0.22 *** Significant at 1 per cent.


Session 6: Non-linearity, Dummy variables

Non-Linearity

Slope Dummies

Model Building 1: Variable transformations

Polynomial regression model: example, graph of mean growth conditioned on size

Growth rate = $\beta_0 + \beta_1 \text{Size} + \beta_2 \text{Size}^2 + \beta_3 \text{Size}^3 + \text{other effects} + u$

Session 6: Non-linearity, Dummy variables

Non-Linearity

Dummies

Slope Dummies

Model Building 1: Variable transformations

Interactions between explanatory variables

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 (X_1 X_2) + u$$

Transformation in practice

•
$$log(Y) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 (X_2)^2 + \beta_4 log(X_3) + \beta_5 X_4 + \beta_6 X_1 X_4 + \beta_7 (\frac{1}{X_5}) + u$$

• Danger: overfitting the model, Mining the sample

Non-Linearity

 Slope Dummies

Dummy variables

Case: Energy costs and refrigerator pricing

- Refrigerators manufactured by a large appliance manufacturer
- The engineering division claim to have designed a new more efficient machine
 - Will cost 80 GBP more to manufacture
 - Users will save 20 GBP per year in energy costs
- Should you recommend building this?
- Q: What would customers pay to save on energy costs?

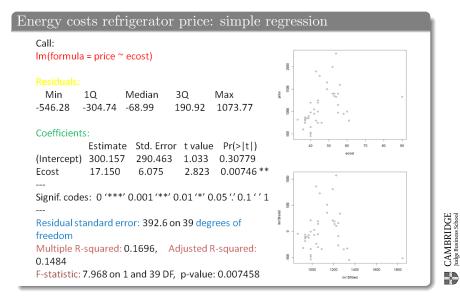
Non-Linearity

 Slope Dummies

Dummy variables

Case: Energy costs and refrigerator pricing - explore

- Summary stats: Price, Ecost
- Simple regression of Price on Ecost
- Do the estimates make sense?


CAMBRIDGE Judge Business School

Session 6: Non-linearity, Dummy variables http://thiloklein.de

Non-Linearity

 Slope Dummies

Dummy variables

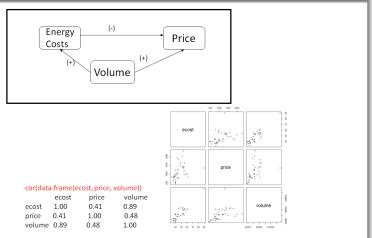
Session 6: Non-linearity, Dummy variables

Non-Linearity

 Slope Dummies

Dummy variables

Case: Energy costs and refrigerator pricing (3)


- Other things affect price besides just energy costs
 - Size
 - Features
 - Brand
 - Design
 - Orientation(freezer on top, side by side..)
 - Others?
- Some of these other variables that impact price are also related to energy costs; notably, size
- A bigger refrigerator costs more to buy and it uses more energy

Non-Linearity

 Slope Dummies

Dummy variables

Energy costs refrigerator price: Correlations

CAMBRIDGE Judge Business School

Session 6: Non-linearity, Dummy variables

Non-Linearity

 Slope Dummies

Dummy variables

Case: Energy costs and fridge pricing - mult. regression

- How does changing energy costs impact price when volume (and other variables) are held fixed
- Multiple regression: Price on Volume and Ecost

Call: Im(formula = price ~ volume + ecost)

 Min
 1Q
 Median
 3Q
 Max

 -646.44
 -253.73
 -79.95
 120.97
 1194.09

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)		
(Intercept)	-342.89642	474.80105	-0.722	0.4746		
volume	0.02177	0.01289	1.689	0.0993.		
ecost	-2.42797	13.02064	-0.186	0.8531		
Signif. codes	s: 0 '***' 0.00)1 '**' 0.01 '*	ʻ' 0.05 '.' 0	.1''1		
Residual sta	indard error: 3	383.6 on 38 <mark>d</mark>	egrees of	freedom		
Multiple R-squared: 0.2277, Adjusted R-squared: 0.187						
F-statistic: 5.6 on 2 and 38 DF, p-value: 0.007387						

CAMBRIDGE Judge Business School

Session 6: Non-linearity, Dummy variables

http://thiloklein.de

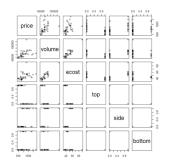
24/37

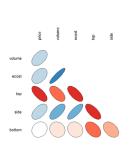
Non-Linearity

 Slope Dummies

Dummy variables

Case: Energy costs and refrigerator pricing - types of fridges


- Three types of fridges:
 - Freezer at the top
 - Freezer at the side
 - Freezer at the bottom
- Question: Will the location of the Freezer make a difference to the price at which you can sell the fridge?


Non-Linearity

 Slope Dummies

Dummy variables

Energy costs refrigerator price: Freezer positions

	price	volume	ecost	top	side	bottom
price	1.00	0.48	0.41	-0.66	0.54	0.16
volume	0.48	1.00	0.89	-0.56	0.65	-0.10
ecost	0.41	0.89	1.00	-0.66	0.78	-0.15
top	-0.66	-0.56	-0.66	1.00	-0.67	-0.41
side	0.54	0.65	0.78	-0.67	1.00	-0.39
bottom	0.16	-0.10	-0.15	-0.41	-0.39	1.00

Session 6: Non-linearity, Dummy variables

http://thiloklein.de

26/37

Non-Linearity

 Slope Dummies

Dummy variables

Case: Energy costs and refrigerator pricing - dummy variables in data

• Data with dummy variables:

Session 6: Non-linearity, Dummy variables http://thiloklein.de

Non-Linearity

 Slope Dummies

Dummy variables

Case: Energy costs and refrigerator pricing - regression with dummies

- Run a multiple regression with dummy variables to separate out the top, bottom and side types
- Run separate regressions for top, bottom and side types
 - What is the intuition?
- Interpret the coefficients

CAMBRIDGE Judge Business School

Non-Linearity

 Slope Dummies

Dummy variables

Case: Energy costs refrigerator price - regression with dummies

Call: Im(formula = price '	~ volume + ecost + top + side)
----------------------------	--------------------------------

Residuals:

Min	1Q	Median	3Q	Max
-438.52	-146.51	-69.94	86.04	1024.22

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	918.19515	435.27647	2.109	0.041925 *
volume	0.02886	0.01007	2.865	0.006915 **
ecost	-38.57106	12.72378	-3.031	0.004491 **
top	-517.39793	131.99344	-3.920	0.000381 ***
side	345.84275	163.74242	2.112	0.041681*
Signif. code	s: 0 '***' 0.0	01'**' 0.01'	*' 0.05 '.' 0	0.1''1
Residual standard error: 294.9 on 36 degrees of freedom				
Multiple R-squared: 0.5675, Adjusted R-squared: 0.5195				
F-statistic: 11.81 on 4 and 36 DF, p-value: 3.143e-06				

Session 6: Non-linearity, Dummy variables

Non-Linearity

Dummies

Slope Dummies

Dummy variables

Omitted Variables cause bias

- In the first equation specified, the regression coefficient is CORRECT.
 - On average, a refrigerator that uses a lot of energy does cost more.
 - It also tends to be larger than average, and large refrigerators cost more
 - This indirect relationship dominates the direct, negative relationship between energy costs and price
- The effects of the missing volume and orientation variables were being picked up by the coefficient on energy cost
 - (biasing it, if what you really wanted was the effect of ecost keeping volume and orientation constant)

Dummies

Slope Dummies

Dummy variables

Omitted Variables cause bias (2)

- The estimate without dummy variables measures:
 - How much price changes on average when energy costs change by 1
 - Letting other variables float (allowing them to change as they have tended to change within our data set)
- The coefficient on energy cost with dummy variable controls measures:
 - How much price changes when energy cost changes by 1, while holding both volume and orientation FIXED
 - Variables included in the regression are considered fixed
 - Omitted variables are not
- The company should go ahead and launch the new fridge.
- The expected price premium will be: (-38.57)(-20) = 771

Non-Linearity

Dummies

Slope Dummies

Dummy variables

Regression with dummies - Changing the base category

lm(formula Coefficients	= price ~ volu ::	me + ecost +	top + bot	tom)
	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	1264.03790	497.02682	2.543	0.01542 *
volume	0.02886	0.01007	2.865	0.00692 **
ecost	-38.57106	12.72378	-3.031	0.00449 **
top	-863.24068	173.40619	-4.978	1.61e-05 ***
bottom	-345.84275	163.74242	-2.112	0.04168 *
	ard error: 294.9 o			
	ared: 0.5675, A 1 on 4 and 36 DF,			
i suusie. 11.0	1 011 4 010 50 01,	p vulue: 5.145e	00	
lm(formula Coefficients	= price ~ volu ::	me + ecost +	side + bo	ttom)
	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	400.79722	400.89226	1.000	0.324098
volume	0.02886	0.01007	2.865	0.006915 **
ecost	-38.57106	12.72378	-3.031	0.004491 **
side	863.24068	173.40619	4.978	1.61e-05 ***
bottom	517.39793	131.99344	3.920	0.000381 ***
Multiple R-squa	ard error: 294.9 o ared: 0.5675, A :1 on 4 and 36 DE	djusted R-square	d: 0.5195	
Session 6: Non-linearity, Dun				oklein.de

32/ 37

Non-Linearity

Slope Dummies

Slope Dummy variables

Slope Dummy variables

- Examine data
- Run separate regressions for each type of fridge
- Compare with a single equation with intercept dummy variables and slope dummy variables.
- What do you expect to see?

Slope Dummies $0 \bullet 000$

Dummy variables

Separate regressions

lm(formula = price ~ volume + ecost, data = fridge[top == 1,])					
	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	-3.780e+02	5.379e+02	-0.703	0.493743	
volume	3.746e-02	7.904e-03	4.740	0.000317 ***	
ecost	-3.286e+01	1.323e+01	-2.484	0.026289 *	
Residual standa	ard error: 123 on :	14 degrees of free	lom		
		djusted R-squared:			
		p-value: 0.00119			
lm(formula	= price ~ volu	me + ecost, da	ta = fridge	e[bottom == 1,])	
Coefficients	5:				
	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	4796.35187	4129.06503	1.162	0.2978	
volume	0.06043	0.02508	2.409	0.0609.	
ecost	-177.39028	113.46895	-1.563	0.1787	
		n 5 degrees of free			
		djusted R-squared	0.3528		
)7 on 2 and 5 DF,				
lm(formula	= price ~ volu	me + ecost, da	ta = fridge	e[side == 1,])	
Coefficients	5:				
	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	1632.27207	766.80331	2.129	0.053 .	
volume	0.01377	0.02000	0.689	0.503	
ecost	-23.80089	22.89475	-1.040	0.317	
Residual standard error: 397 on 13 degrees of freedom					
Multiple R-squ	ared: 0.0919, A	djusted R-squared	-0.04781		
F-statistic: 0.65	578 on 2 and 13 D	F, p-value:0.5344			

Session 6: Non-linearity, Dummy variables

Non-Linearity

Slope Dummies 000000

Dummy variables

Regression with slope dummy variables

Im(formula = price ~ volume + ecost + top + side + top_vol + top_ecost + side_vol + side_ecost)

Residuals

Min	1Q	Median	3Q	Max
-490.68	-115.78	-61.38	72.70	953.74

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	4.796e+03	3.716e+03	1.291	0.2060	
volume	6.043e-02	2.257e-02	2.677	0.0116 *	
ecost	-1.774e+02	1.021e+02	-1.737	0.0920.	
top	-5.174e+03	3.935e+03	-1.315	0.1979	
side	-3.164e+03	3.760e+03	-0.842	0.4063	
top_vol	-2.297e-02	2.952e-02	-0.778	0.4422	
top_ecost	1.445e+02	1.070e+02	1.351	0.1861	
side_vol	-4.666e-02	2.705e-02	-1.725	0.0942.	
side_ecost	1.536e+02	1.035e+02	1.484	0.1477	
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1					

Residual standard error: 295.8 on 32 degrees of freedom Multiple R-squared: 0.6132, Adjusted R-squared: 0.5164 F-statistic: 6.34 on 8 and 32 DF, p-value: 6.29e-05

Session 6: Non-linearity, Dummy variables

Slope Dummies 00000

Slope Dummy variables

Interpreting slope Dummy variables coefficients

- Nothing much is significant!
- Problem: rampant multi-collinearity
- But useful exercise to interpret:
 - No difference in base price between Top, Bottom and Side fridges
 - With each cc increase in volume of Bottom fridges, price goes up by 6 pence (significant at 5% level)
 - No significant difference from this for top fridges
 - Side fridge prices go up by 1.3 pence per cc. The difference between bottom and side (4.7 pence per cc) is significant at 10% level.)
 - As energy cost goes up, price for bottom fridges goes down by 177
 - No different for Top or Side fridges

CAMBRIDGE Judge Business School

Non-Linearity

Slope Dummies

Slope Dummy variables

Comparing Regressions

- These are the same equations that we saw in the three simple regressions that we started with.
- The multiple regression is able to duplicate the performance of the two simple ones.
- It can also test the significance of the difference between the two slopes