MPO1: Quantitative Research Methods
 Session 6: F-tests for goodness of fit, Non-linearity and Model Transformations, Dummy variables, Interactions

Thilo Klein

University of Cambridge
Judge Business School
χ^{2} and F Distributions

Chi-squared Distribution $\chi_{K}{ }^{2}$

- If $Y_{i} \sim N(0,1)$, then
- $\sum_{i=1}^{K} Y_{i}^{2} \sim \chi_{K}{ }^{2}$ distribution, with K degrees of freedom

$$
p d f: f(y, K)= \begin{cases}\frac{1}{2^{K / 2} \Gamma(K / 2)} y^{(K / 2)-1} e^{-y / 2} & \text { for } y>0 \\ 0 & \text { for } y \leq 0\end{cases}
$$

- $\Gamma(\cdot)$ is the Gamma function
- $E\left(\sum_{i=1}^{K} Y_{i}^{2}\right)=K$

χ^{2} and F Distributions

Chi-squared Distribution $\chi_{K}{ }^{2}$

χ^{2} and F Distributions

F Distribution

- If $U_{1} \sim \chi_{d f_{1}}{ }^{2}, U_{2} \sim \chi_{d f_{2}}{ }^{2}$ and U_{1}, U_{2} are independent, then

$$
X=\frac{U_{1} / d f_{1}}{U_{2} / d f_{2}} \sim F_{d f_{1}, d f_{2}}
$$

- pdf of an F distributed random variable, X with $d f_{1}$ and $d f_{2}$ degrees of freedom is:

$$
f(x)=\frac{\sqrt{\frac{\left(d f_{1} x\right)^{d f_{1}} d f_{2}^{d f_{2}}}{\left(d f_{1} x+d f_{2}\right)^{d f_{1}+d f_{2}}}}}{x \mathrm{~B}\left(\frac{d f_{1}}{2}, \frac{d f_{2}}{2}\right)}
$$

- $B(\cdot, \cdot)$ is the Beta function
- $E(X)=\frac{d f_{2}}{d f_{2}-2}$ for $d f_{2}>0$

χ^{2} and F Distributions

F-distribution

F Tests of fit

F-test of R^{2}

$$
Y_{i}=\beta_{0}+\beta_{1} X_{1}+\cdots+\beta_{k} X_{k}+u_{i}
$$

$$
H_{0}: \beta_{1}=\cdots=\beta_{K}=0 \quad H_{a}: \text { at least one } \beta \neq 0
$$

$$
\begin{aligned}
\frac{E S S /(K-1)}{R S S /(n-K)} & =\frac{\frac{E S S}{T S S} /(K-1)}{\frac{R S S}{T S S} /(n-K)} \\
& =\frac{R^{2} /(K-1)}{\left(1-R^{2}\right) /(n-K)} \sim F(K-1, n-K)
\end{aligned}
$$

Application

Another application: incremental contribution of a set of variables

- $Y=\beta_{1}+\beta_{2} X_{2}+u: \quad R S S_{1}$
- $Y=\beta_{1}+\beta_{2} X_{2}++\beta_{3} X_{3}+\beta_{4} X_{4}+u: \quad R S S_{2}$
- $H_{0}: \beta_{3}=\beta_{4}=0 ; \quad H_{a}: \beta_{3} \neq 0$ or $\beta_{4} \neq$ 0 or both β_{3} and $\beta_{4} \neq 0$

$$
\frac{\text { Increase in ESS }}{\text { cost in d.f. }} / \frac{\text { remaining RSS }}{\text { d.f. remaining }} \sim F(\text { cost, d.f. remaining })
$$

$$
\frac{\left(R S S_{1}-R S S_{2}\right) /\left(d f_{1}-d f_{2}\right)}{R S S_{2} / d f_{2}} \sim F\left(d f_{1}, d f_{2}\right)
$$

- Note: $F_{1, n}$ is the squared Student t_{n} distribution
- A series of independent t tests is not the same as an F test: why?

Plan for today

Non-linear regression functions

If the dependence between Y and X is non-linear, the marginal effect of X is not constant.
Approach:

- non-linear functions of a single independent variable
- Polynomials in X; Logarithmic transformation
- Interactions

Model Building 1: Variable transformations

Why variable transformations?

- Transformations: suitable mathematical functions applied to variables
- Sometimes sensible to transform the dependent and/or explanatory variables through one-to-one functions, and estimate the model with these transformed variables. Why?
- May make more sense from a theoretical or data generating point of view.
- Mulitple linear regression more reliable when predictors have reasonably symmetric distributions and are not too highly skewed in distribution
- Many variables of interest are positively skewed: a \log transformation works well to transform such variables

Model Building 1: Variable transformations

Linearity and Nonlinearity

- Linear in variables and parameters:
- $Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{3} X_{3}+u$
- Linear in parameters, nonlinear in variables:
- $Y=\beta_{0}+\beta_{1} X_{1}{ }^{2}+\beta_{2} \sqrt{X_{2}}+\beta_{3} \log X_{3}+u$
- $Z_{1}=X_{1}{ }^{2}, Z_{2}=\sqrt{X_{2}}, Z_{3}=\log X_{3}$
- $Y=\beta_{0}+\beta_{1} Z_{1}+\beta_{2} Z_{2}+\beta_{3} Z_{3}+u$
- Cosmetic transformations sufficient to make the model linear in variables
- Nonlinear in parameters: Cannot estimate with OLS - but other methods exist
- $Y=\beta_{0}+\beta_{1} Z_{1}+\beta_{2} Z_{2}+\left(\beta_{1}\left(1-\beta_{2}\right)\right) Z_{3}+u$

Model Building 1: Variable transformations

Double-logarithmic models and Elasticity

- Sometimes a stronger linear relationship between $\log Y$ and $\log X$, than between Y and X (Why?)
- Examples: demand functions: 1% change in price leads to (constant) $x \%$ change in quantity demanded
- Proportionate change in Y linearly related to proportionate change in X
- Double-logarithmic model: constant elasticity of Y with respect to X
- Elasticity $=\frac{d Y / Y}{d X / X}=\frac{d Y / d X}{Y / X}$

Model Building 1: Variable transformations

Double-logarithmic models and Elasticity: figure

Model Building 1: Variable transformations

Double-logarithmic models and Elasticity (2)

- $Y=\beta_{0} X^{\beta_{1}}$
- $\frac{d Y}{d X}=\beta_{0} \beta_{1} X^{\beta_{1}-1}$
- $\frac{Y}{X}=\frac{\beta_{0} X^{\beta_{1}}}{X}=\beta_{0} X^{\beta_{1}-1}$
- Elasticity $=\frac{d Y / d X}{Y / X}=\frac{\beta_{0} \beta_{1} X^{\beta_{1}-1}}{\beta_{0} X^{\beta_{1}-1}}=\beta_{1}$
- Simple to fit a constant elasticity model to data: linearize the model by taking the logarithms of both sides

$$
\begin{aligned}
\log Y & =\log \left(\beta_{0} X^{\beta_{1}}\right)=\log \beta_{0}+\log \left(X^{\beta_{1}}\right) \\
& =\log \beta_{0}+\beta_{1} \log X=b_{0}+b_{1} \log X
\end{aligned}
$$

- The constant b_{0} is the estimate of $\log \beta_{0}$
- To obtain estimate of β_{1}, exponentiate the estimated regression coefficient b_{1}

Model Building 1: Variable transformations

Semi-logarithmic models

- Another kind of a multiplicative relationship:
- e.g., between additional years of experience (or education) and earnings
- The semi-logarithmic specification allows the increment to increase with level of education
- $Y=\beta_{0} e^{\beta_{1} X}$
- $\frac{d Y}{d X}=\beta_{0} \beta_{1} e^{\beta_{1} X}=\beta_{1} Y$
- $\frac{d Y / Y}{d X}=\beta_{1}$

Model Building 1: Variable transformations

Polynomial models

- $Y=\beta_{1}+\beta_{2} X+\beta_{3} X^{2}+\beta_{4} X^{3}+u$
- Difficult to justify powers greater than 3 , unless strong theoretical reasons to fit higher power
- Center X : deviations of X from its mean (or median) can reduce collinearity between X and higher powers
- A polynomial function may be used when
- the true response function is polynomial
- the true response function is unknown but a polynomial is a good approximation of its shape
- General principle: hierarchy
- Keep X in the model, if X^{2} is significant
- Keep X and X^{2} in the model, if X^{3} is significant

Model Building 1: Variable transformations

Polynomial regression model: why is this example interesting?

Sample: 75 "services" firms from the North of England, observed in 2002-3

Dependent variable: Annual growth rate of the firm
Expl Vars Estimates

CONSTANT	$0.66^{* * *}$	
EDUC	$-0.28^{* * *}$: no A levels $=0 ;$ A levels $=1$
TIMTR	$0.46 \mathrm{E}-4^{* * *}$: period respondent in business (years).
SIZE	$-0.43^{* * *}$: Opening employment full time equivalents
SIZESQ	$0.06^{* * *}$: SIZE squared
SIZECUB	$-0.002^{* * *}$:SIZE cubed
PPROF	$-0.37^{* * *}$: \% of empl. accounted for by professionals
TURB	$0.00^{* * *}$: sum of birth and death rates in the industry
EDUCXPPROF	$0.33^{* * *}$: interaction term

$\mathrm{R}^{2}=0.22 \quad$ *** Significant at 1 per cent.

Model Building 1: Variable transformations

Polynomial regression model: example, graph of mean growth conditioned on size

Growth rate $=\beta_{0}+\beta_{1} \mathrm{Size}+\beta_{2} \mathrm{Size}^{2}+\beta_{3} \mathrm{Size}^{3}+$ other effects $+u$

Model Building 1: Variable transformations

Interactions between explanatory variables

$$
Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{3}\left(X_{1} X_{2}\right)+u
$$

Transformation in practice

- $\log (Y)=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{3}\left(X_{2}\right)^{2}+\beta_{4} \log \left(X_{3}\right)+$ $\beta_{5} X_{4}+\beta_{6} X_{1} X_{4}+\beta_{7}\left(\frac{1}{X_{5}}\right)+u$
- Danger: overfitting the model, Mining the sample

Dummy variables

Case: Energy costs and refrigerator pricing

- Refrigerators manufactured by a large appliance manufacturer
- The engineering division claim to have designed a new more efficient machine
- Will cost 80 GBP more to manufacture
- Users will save 20 GBP per year in energy costs
- Should you recommend building this?
- Q: What would customers pay to save on energy costs?

Dummy variables

Case: Energy costs and refrigerator pricing - explore

- Summary stats: Price, Ecost
- Simple regression of Price on Ecost
- Do the estimates make sense?

Dummy variables

Energy costs refrigerator price: simple regression

Call:
Im(formula $=$ price \sim ecost)
Residuals:

Min	1Q	Median	3Q	Max
-546.28	-304.74	-68.99	190.92	1073.77

Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|t|)$
(Intercept) $300.157 \quad 290.4631 .0330 .30779$
$\begin{array}{lllll}\text { Ecost } & 17.150 \quad 6.075 & 2.823 & 0.00746^{* *}\end{array}$

Signif. codes: $0{ }^{* * * *} 0.001^{* * *} 0.01^{* *} 0.05^{\prime \prime} 0.1^{\prime \prime} 1$

Residual standard error: 392.6 on 39 degrees of freedom
Multiple R-squared: 0.1696, Adjusted R-squared:
0.1484

F-statistic: 7.968 on 1 and 39 DF, p-value: 0.007458

Dummy variables

Case: Energy costs and refrigerator pricing (3)

- Other things affect price besides just energy costs
- Size
- Features
- Brand
- Design
- Orientation(freezer on top, side by side..)
- Others?
- Some of these other variables that impact price are also related to energy costs; notably, size
- A bigger refrigerator costs more to buy and it uses more energy

Dummy variables

Energy costs refrigerator price: Correlations

Dummy variables

Case: Energy costs and fridge pricing - mult. regression

- How does changing energy costs impact price when volume (and other variables) are held fixed
- Multiple regression: Price on Volume and Ecost

```
Call: Im(formula = price ~ volume + ecost)
Residuals:
\begin{tabular}{cllcl} 
Min & 1Q & Median & 3Q & Max \\
-646.44 & -253.73 & -79.95 & 120.97 & 1194.09
\end{tabular}
Coefficients:
\begin{tabular}{lllcl} 
& Estimate & Std. Error & t value & \(\operatorname{Pr}(>|\mathrm{t}|\) ) \\
(Intercept) & -342.89642 & 474.80105 & -0.722 & 0.4746 \\
volume & 0.02177 & 0.01289 & 1.689 & 0.0993. \\
ecost & -2.42797 & 13.02064 & -0.186 & 0.8531
\end{tabular}
Signif. codes: 0 ****' 0.001***' 0.01'*'0.05'.'0.1 ' 1
Residual standard error: 383.6 on 38 degrees of freedom
Multiple R-squared: 0.2277, Adjusted R-squared: 0.187
F-statistic: 5.6 on 2 and 38 DF, p-value: 0.007387
```


Dummy variables

Case: Energy costs and refrigerator pricing - types of fridges

- Three types of fridges:
- Freezer at the top
- Freezer at the side
- Freezer at the bottom
- Question: Will the location of the Freezer make a difference to the price at which you can sell the fridge?

Dummy variables

Energy costs refrigerator price: Freezer positions

	price	volume	ecost	top	side	bottom
price	1.00	0.48	0.41	-0.66	0.54	0.16
volume	0.48	1.00	0.89	-0.56	0.65	-0.10
ecost	0.41	0.89	1.00	-0.66	0.78	-0.15
top	-0.66	-0.56	-0.66	1.00	-0.67	-0.41
side	0.54	0.65	0.78	-0.67	1.00	-0.39
bottom	0.16	-0.10	-0.15	-0.41	-0.39	1.00

Dummy variables

Case: Energy costs and refrigerator pricing - dummy variables in data

- Data with dummy variables:

Dummy variables

Case: Energy costs and refrigerator pricing - regression with dummies

- Run a multiple regression with dummy variables to separate out the top, bottom and side types
- Run separate regressions for top, bottom and side types
- What is the intuition?
- Interpret the coefficients

Dummy variables

Case: Energy costs refrigerator price - regression with dummies

Call: Im (formula $=$ price \sim volume + ecost + top + side $)$
Residuals:

Min	$1 Q$	Median	$3 Q$	Max
-438.52	-146.51	-69.94	86.04	1024.22

Coefficients:

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|\mathrm{t}\|)$
tercept)	918.19515	435.27647	2.109	0.041925^{*}
olume	0.02886	0.01007	2.865	0.006915
ecost	-38.57106	12.72378	-3.031	0.004491 *
top	-517.39793	131.99344	-3.920	0.000381 *
side	345.84275	163.74242	2.112	0.041681 *
Signif. codes: $0^{\prime * * * \prime} 0.001^{* * *} 0.01^{* *} 0.05^{\prime \prime} 0.1^{\prime \prime} 1$				
Residual standard error: 294.9 on 36 degrees of freedom				
Multiple R-squared: 0.5675, Adjusted R-squared: 0.5195				
F-statistic: 11.81 on 4 and 36 DF, p-value: $3.143 \mathrm{e}-06$				

Dummy variables

Omitted Variables cause bias

- In the first equation specified, the regression coefficient is CORRECT.
- On average, a refrigerator that uses a lot of energy does cost more.
- It also tends to be larger than average, and large refrigerators cost more
- This indirect relationship dominates the direct, negative relationship between energy costs and price
- The effects of the missing volume and orientation variables were being picked up by the coefficient on energy cost
- (biasing it, if what you really wanted was the effect of ecost keeping volume and orientation constant)

Dummy variables

Omitted Variables cause bias (2)

- The estimate without dummy variables measures:
- How much price changes on average when energy costs change by 1
- Letting other variables float (allowing them to change as they have tended to change within our data set)
- The coefficient on energy cost with dummy variable controls measures:
- How much price changes when energy cost changes by 1 , while holding both volume and orientation FIXED
- Variables included in the regression are considered fixed
- Omitted variables are not
- The company should go ahead and launch the new fridge.
- The expected price premium will be: $(-38.57)(-20)=771$

Dummy variables

Regression with dummies - Changing the base category

Im(formula = price \sim volume + ecost + side + bottom $)$
Coefficients:

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|\mathrm{t}\|)$
(Intercept)	400.79722	400.89226	1.000	0.324098
volume	0.02886	0.01007	2.865	$0.006915^{* *}$
ecost	-38.57106	12.72378	-3.031	$0.004491^{* *}$
side	863.24068	173.40619	4.978	$1.61 \mathrm{e}-05^{* * *}$
bottom	517.39793	131.99344	3.920	$0.000381^{* * *}$

Residual standard error: 294.9 on 36 degrees of freedom
Multiple R-squared: 0.5675 , Adjusted R-squared: 0.5195
F-statistic: 11.81 on 4 and 36 DF. n-value: $3.143 e-06$

Slope Dummy variables

Slope Dummy variables

- Examine data
- Run separate regressions for each type of fridge
- Compare with a single equation with intercept dummy variables and slope dummy variables.
- What do you expect to see?

Dummy variables

Separate regressions

Im(formula $=$ price \sim volume + ecost, data $=$ fridge[top $==1$,])				
	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|t\|)$
(Intercept)	$-3.780 \mathrm{e}+02$	$5.379 \mathrm{e}+02$	-0.703	0.493743
volume	$3.746 \mathrm{e}-02$	$7.904 \mathrm{e}-03$	4.740	$0.000317^{* * *}$
ecost	$-3.286 \mathrm{e}+01$	$1.323 \mathrm{e}+01$	-2.484	0.026289 *
Residual standard error: 123 on 14 degrees of freedom				
Multiple R-squared: 0.6176 , Adjusted R-squared: 0.563				
F-statistic: 11.31 on 2 and 14 DF , p-value: 0.001195				
$\operatorname{lm}\left(\right.$ formula $=$ price ${ }^{\sim}$ volume + ecost, data $=$ fridge[bottom $\left.==1,\right]$)				
Coefficients:				
	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|\mathrm{t}\|)$
(Intercept)	4796.35187	4129.06503	1.162	0.2978
volume	0.06043	0.02508	2.409	0.0609
ecost	-177.39028	113.46895	-1.563	0.1787
Residual standard error: 328.7 on 5 degrees of freedom				
Multiple R-squared: 0.5377 , Adjusted R-squared: 0.3528				
F-statistic: 2.907 on 2 and 5 DF, p-value: 0.1453				
Im(formula $=$ price \sim volume + ecost, data $=$ fridge[side $==1$,])				
Coefficients:				
	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|t\|)$
(Intercept)	1632.27207	766.80331	2.129	0.053
volume	0.01377	0.02000	0.689	0.503
ecost	-23.80089	22.89475	-1.040	0.317
Residual standard error: 397 on 13 degrees of freedom				
Multiple R-squared: 0.0919 , Adjusted R-squared: -0.04781				
F-statistic: 0.6578 on 2 and 13 DF, p-value: 0.5344				

Dummy variables

Regression with slope dummy variables

Im(formula $=$ price ${ }^{\sim}$ volume + ecost + top + side + top_vol + top_ecost + side_vol +side_ecost)
Residuals:

Min	1Q	Median	3Q	Max
-490.68	-115.78	-61.38	72.70	953.74

Coefficients:

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|\mathrm{t}\|)$
(Intercept)	$4.796 \mathrm{e}+03$	$3.716 \mathrm{e}+03$	1.291	0.2060
volume	$6.043 \mathrm{e}-02$	$2.257 \mathrm{e}-02$	2.677	0.0116^{*}
ecost	$-1.774 \mathrm{e}+02$	$1.021 \mathrm{e}+02$	-1.737	0.0920.
top	$-5.174 \mathrm{e}+03$	$3.935 \mathrm{e}+03$	-1.315	0.1979
side	$-3.164 \mathrm{e}+03$	$3.760 \mathrm{e}+03$	-0.842	0.4063
top_vol	$-2.297 \mathrm{e}-02$	$2.952 \mathrm{e}-02$	-0.778	0.4422
top_ecost	$1.445 \mathrm{e}+02$	$1.070 \mathrm{e}+02$	1.351	0.1861
side_vol	$-4.666 \mathrm{e}-02$	$2.705 \mathrm{e}-02$	-1.725	0.0942 .
side_ecost	$1.536 \mathrm{e}+02$	$1.035 \mathrm{e}+02$	1.484	0.1477

Signif. codes: $0{ }^{* * * * '} 0.001^{\prime * * \prime} 0.01^{\prime * \prime} 0.05^{\prime \prime} 0.1^{\prime \prime} 1$

Residual standard error: 295.8 on 32 degrees of freedom
MultipleR-squared: 0.6132 , Adjusted R-squared: 0.5164
F-statistic: 6.34 on 8 and 32 DF, p-value: 6.29e-05

Slope Dummy variables

Interpreting slope Dummy variables coefficients

- Nothing much is significant!
- Problem: rampant multi-collinearity
- But useful exercise to interpret:
- No difference in base price between Top, Bottom and Side fridges
- With each cc increase in volume of Bottom fridges, price goes up by 6 pence (significant at 5% level)
- No significant difference from this for top fridges
- Side fridge prices go up by 1.3 pence per cc. The difference between bottom and side (4.7 pence per cc) is significant at 10% level.)
- As energy cost goes up, price for bottom fridges goes down by 177
- No different for Top or Side fridges

Slope Dummy variables

Comparing Regressions

- These are the same equations that we saw in the three simple regressions that we started with.
- The multiple regression is able to duplicate the performance of the two simple ones.
- It can also test the significance of the difference between the two slopes

